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Collision statistics of driven granular materials

Daniel L. Blair and A. Kudrolli
Department of Physics, Clark University, Worcester, Massachusetts 01610

~Received 13 December 2002; published 2 April 2003!

We present an experimental investigation of the statistical properties of spherical granular particles on an
inclined plane that are excited by an oscillating side wall. The data is obtained by high-speed imaging and
particle tracking techniques. We identify all particles in the system and link their positions to form trajectories
over long times. Thus, we identify particle collisions to measure the effective coefficient of restitution and find
a broad distribution of values for the same impact angles. We find that the energy inelasticity can take on
values greater than one, which implies that the rotational degrees of freedom play an important role in energy
transfer. We also measure the distance and the time between collision events in order to directly determine the
distribution of path lengths and the free times. These distributions are shown to deviate from expected theo-
retical forms for elastic spheres, demonstrating the inherent clustering in this system. We describe the data with
a two-parameter fitting function and use it to calculate the mean free path and collision time. We find that the
ratio of these values is consistent with the average velocity. The velocity distributions are observed to be
strongly non-Gaussian and do not demonstrate any apparent universal behavior. We report the scaling of the
second moment, which corresponds to the granular temperature, and higher order moments as a function of
distance from the driving wall. Additionally, we measure long-time correlation functions in both space and in
the velocities to probe diffusion in a dissipative gas.

DOI: 10.1103/PhysRevE.67.041301 PACS number~s!: 81.05.Rm, 05.20.Dd, 45.05.1x, 45.70.Mg
de
a
le
na
en
n

or

an
u
tio
e

na
em
le

at
ta
ke
ry
t i
e
c
b
m

it

en
e
le
na

een

ret-
nge
nd
at
em-
ge
no

w a
oc-
ri-
ents

d
an

r a
ted
lli-
av-
een
ter-

le-
-
ior
e-

ev-
tic

ing
I. INTRODUCTION

Granular material represent a type of matter not well
fined by conventional means. Although each granular p
ticle is obviously solid, an assemblage of these partic
show distinctly nonsolid behavior when subjected to exter
forces@1#. In the rapid flow regime, the interaction betwe
the grains is collisional and the system resembles a de
granular gas. Indeed, the kinetic theory for dense gases f
mulated by Chapman and Enskog@2# have been modified to
include the dissipative nature of the collisions@3,4#. How-
ever, a number of approximations have to be made in
calculation that can be only validated by experiments. F
thermore, even if key assumptions such as equiparti
breakdown@5–7#, it is important to have a measure of th
failure to guide further development.

Energy has to be constantly supplied from an exter
source to observe a steady state in granular gas syst
Therefore, model experiments consist of granular partic
inside a container where energy is continuously injected
side wall@8–10#. Thus gradients are present in experimen
granular systems, which implies that care must be ta
when comparing results to nonequilibrium kinetic theo
@11–13#. With advances in high-speed image acquisition, i
now possible to obtain positions of particles several tim
between collisions. However, particle positions and velo
ties can be obtained accurately only in two dimensions
direct imaging thus forcing certain constraints on the geo
etry of the system.

One of the first such experiments to investigate veloc
distribution functions~VDFs! utilized an apparatus in which
particles are vibrated vertically inside a narrow transpar
box @8,14,15#. Maxwellian statistics were reported for th
vertical and horizontal velocity components of the partic
parallel to the plane of the transparent side walls. Additio
1063-651X/2003/67~4!/041301~12!/$20.00 67 0413
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interactions in these systems arise due to collisions betw
particles and the side walls@14#. Following this work, Wild-
man, Huntly, and Hansen@16# were able to do long time
particle tracking to measure diffusion constants by interp
ing mean square displacement data over a very broad ra
of density. More recently, in a similar apparatus, Rouyer a
Menon@17# report that their VDFs have a universal form th
can be parametrized by a single variable, the granular t
perature. A different method of energy injection utilizes lar
flat container that is vibrated vertically to excite a sub mo
layer of particles@10,18,19#. The velocity of the particles in
the horizontal plane are measured and are found to follo
non-Gaussian distribution. However, the impact of the vel
ity gradient in the vertical direction on the observed dist
butions are not taken into account because these compon
cannot be measured.

Our experiment is a variation of the vertically vibrate
apparatus. Spherical particles are constrained to roll on
inclined two-dimensional surface. This geometry allows fo
direct investigation of the interplay between energy injec
at the side wall and the dissipation through inelastic co
sions. In addition, the inclination reduces the effects of gr
ity, therefore minimizing shock waves. This system has b
used to demonstrate clustering and collapse when the in
particle collision frequency is much greater than partic
driving wall collision frequency@9#. Recent works have ex
plored a full range VDFs, from very near Gaussian behav
to highly non-Gaussian distribution functions, as well as v
locity correlations@20,21#.

In addition to analytical techniques and experiments, s
eral groups have utilized computer simulations of inelas
hard spheres with both Molecular Dynamics@12,22–27# and
Direct Simulation Monte Carlo@28–32# techniques to inves-
tigate the statistical properties of granular gases. Us
DSMC simulations, Baldassarriet al. @30# have found veloc-
©2003 The American Physical Society01-1
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D. L. BLAIR AND A. KUDROLLI PHYSICAL REVIEW E 67, 041301 ~2003!
ity and density distributions that are qualitatively similar
our previous experimental results@21#. Recent work by Brey
and Ruiz-Montero@27# investigate how the second an
fourth moments of the VDFs scale as a function of dista
from the driving wall, which until now, have not been e
perimentally tested.

In this paper, we report on the statistical properties o
gas of inelastic particles constrained to two dimensions.
inclined geometry reduces the gravitational acceleration
ing on each particle which results in lower mean velociti
The combination of slow dynamics and high-speed imag
allows us to accurately identify the particle trajectories a
collision events. By using velocities before and after a co
sion event, we measure the normal coefficient of restitut
We find that these quantities are found to be broadly dist
uted for the same impact parameters. By calculating the
tance and time between collision events we measure the
tributions of free paths and times. We find that the
distributions do not follow the result found from kinet
theory. The path and time distributions have an overpop
tion of short distance and time bins, demonstrating the inh
ent clustering present in granular gases. We propose an
pirical form that captures the distributions, which is th
used to calculate the mean free path and free time as a f
tion of density. The particle trajectories are also used to m
sure the mean square displacement, velocity autocorrela
and diffusion rates. The distribution of particle velocities a
measured with a variation in density of an order of mag
tude and show distinctly non-Gaussian behavior with no
parent universal form. We compare our results to recent
periments, as well as theoretical and simulation treatmen
equivalent systems.

The paper has the following structure. In Sec. II w
present the experimental apparatus and imaging meth
Section III provides the overall system characteristics suc
the density distributions and coefficients of restitution a
inelasticities. We then present our analysis of the trajecto
of the particles in Sec. IV. Finally, in Sec. V we summari
our results in the context of granular kinetic theory and sim
lations.

II. EXPERIMENTAL METHODS

The experimental configuration@Fig. 1#, consists of a
100s360s (31 cm319 cm) glass plane that is inclined
an angleb with the horizontal. The particles are stainle
steel with diameters53.175 mm and a high degree of sph
ricity (ds/s51024). The number of particles, measured
number of monolayersNl across the driving wall, is varied
betweenNl51 –5 in steps of one layer,~viz., from Np
5100–500 in steps of 100, whereNp is the number of par-
ticles!. The energy source is an oscillating side wall, driv
by a solenoid, that is located as shown in Fig. 1~a!. The
driving signal is a 10 Hz pulse with a velocity during ea
pulse of;40 cm s21. The driving frequency and amplitud
were chosen to ensure that no phase dependence on the
ter of mass is observed~at frequencies below 2 Hz the pa
ticle positions are phase locked with the driving!. The signal
is produced with a computer interfaced Aglient Technolog
04130
e

a
n
t-
.
g
d
-
.
-
s-
is-
e

a-
r-
m-

c-
a-
n,

-
-

x-
of

ds.
as
d
s

-

en-

s

33120-A wave-form generator that is and subsequently
plified by an HP 6824A Amplifier. The inclination of the
plane can be varied betweenb50° –8°, for our experiments
the angle was fixed atb52°60.1° or 4°60.1°. In the ex-
treme case ofb!1°, the particles essentially cease to inte
act with the energy source and cluster at the side opposit
the driving.

The particles are imaged using a Kodak MotionCord
SR1000 high-speed digital camera. We measure the posit
of all particles contained in the apparatus for 1365 frame
250 frames per second at full spatial resolution
5123480 pixels. These digital images are then transfered
a computer and analyzed using a centroid method that all

FIG. 1. ~Color online! ~a! Schematic diagram of the experimen
tal setup. The inclined plane is a smooth glass surface, the
walls and driving wall are stainless steel so that the partic
boundary collisions approximate those between particles. The d
ing is produced by a solenoid connected to the lowest side wall.
angle of inclinationb, can be varied fromb50° –8°, the values of
b we have chosen are 2°60.1° and 4°60.1°. ~b! An image of the
system taken from above. The bottom right corner is considered
origin of our coordinate system (0,0). The white bars allow us
track the position of the driving wall.
1-2
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COLLISION STATISTICS OF DRIVEN GRANULAR MATERIALS PHYSICAL REVIEW E67, 041301 ~2003!
us to resolve each particle to subpixel accuracy. After e
particle is located the positions are then connected in tim
form continuous trajectories for 5.46 s. Our coordinate s
tem is such that thex,y axes are parallel and perpendicular
the driving, respectively@see Fig. 1#. A typical particle tra-
jectory is shown in Fig. 2~a!. Multiple collision events can be
distinguished with nearly straight paths between each ev
A particle that freely rolls on the inclined plane will follow
parabolic trajectory@see Fig. 2~b!#. The particle trajectory is
given by

y~x!5
5

7

x2

2vx
2

g sin~b!, ~1!

where g is the acceleration due to gravity,vx is measured
from the width of the parabola, and the5

7 factor is due to the
moment of inertia for a solid sphere.

III. SYSTEM CHARACTERISTICS

A. Density distributions

The results presented will be given in terms of the num
of single layers across the cell,Nl and the angle of inclina-
tion b, which determine the area fractionf @see Table I#. We

FIG. 2. ~Color online! ~a! Linked particle positions over 1365
time steps (Nl53). We can determine particle collision events wi
a high degree of accuracy from trajectories such as this.~b! The
parabolic path of a particle. We use fixed values forvx and g
5980 cm s22 to measureg85

5
7 g sinb. The fit givesb52.2°, the

deviation from the measured value ofb is 9%.
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measuref by defining a region of interest~ROI! that is
centered about the peak inr(y), @Fig. 3~b!# whose extent in
they direction is limited to610%ofr(y). The ROI scheme
excludes all particles that are within 3s of the side walls to

FIG. 3. ~Color online! ~a! The densityr(x) versusx for all Nl .
The obvious clustering due to inelastic collisions at the side wall
demonstrated here. Also, asNl is increased the system becom
more inhomogeneous across the cell. This effect is most likely
to the onset of clustering instabilities that have been recently
cussed@33–35#. ~b! The aerial density plotsr(y) for eachNl andb
on a log-linear plot. The densityf is measured in a particular are
by integratingr(y) over that region of interest. The total under ea
curve corresponds to the average area fraction for that partic
Nl . The solid line shows an exponential fit over the tail of t
distribution of Nl5200. However, we will demonstrate that th
isothermal atmosphere is not obeyed for any density.

TABLE I. Experimental values of the number of layersNl , the
angle of inclinationb, and the resulting measured value off. Np,
the number of particles in the system, is given for clarity.

Nl b f Np

1 2.0 0.022 100
2 2.0 0.068 200
3 2.0 0.138 300
4 2.0 0.191 400
4 4.0 0.302 400
5 4.0 0.581 500
1-3
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D. L. BLAIR AND A. KUDROLLI PHYSICAL REVIEW E 67, 041301 ~2003!
ensure that clustering due to the side walls does not af
our results@see Fig. 3~a!#. The over-plotted box in Fig. 1~b!
demonstrates the ROI definition forf50.13. A more strin-
gent division of the system in they direction will be used
when the behavior of the temperature, pressure, and kur
are discussed in Sec. IV. The form of the density in they
direction is similar to that found in Refs.@14,36#. However,
we find that the form of the tails ofr(y) at higher values of
Nl b deviate from Boltzmann distribution. This implies th
the law of isothermal atmospheres breaks down for gran
systems as we shall also see when we discuss the scali
the granular temperature in Sec. IV E.

B. Particle collisions

We identify collision events from the trajectories by usi
the following algorithm. Velocities are constructed as fin
differencesvj5Dx/Dt, whereDx5x(t j )2x(t i) and the sub-
scripts i , j represent positions separated by the time diff
enceDt54 ms. All velocity vectors are compared seque
tially to find direction changes given by

c5cos21~ v̂i• v̂j !, ~2!

where v̂5v/uvu the unit vector of the calculated velocity.
20°<c<180o the proximity of all particles at the same tim
instant is checked. If a particle is found within a radiuss
1Ds, whose velocity also satisfy Eq.~2! it is considered as
a candidate for a collision. To assure that recollisions are
occurring, we maintain a record of the identity of the pre
ous collision partner. We then ensure that those particles
recollide if and only if the partner particle has undergone
collision with yet a third particle. If particles pass these
quirements then a collision has occurred. To extend the
gorithm to include collisions with the boundary walls we fir
check if Eq.~2! is satisfied. We then check if the particle
center is withins1Ds of a boundary and it’s velocity com
ponent perpendicular to the wall is reversed.

C. Coefficient of normal restitution

The loss of energy in a collision is determined by t
coefficient of restitution. If particles are rough,~i.e., fric-
tional! both the the normal and tangential components m
be considered when describing inelastic particle collisio
Using simulations and theory, McNamara and Luding@37#
have described the lack of energy equipartition between
linear and rotational degrees of freedom for colliding rou
particles. As described in Sec. II, the particles in our syst
must roll between collision events, which leads to comp
interactions at contact@38#. Angular momenta,~both from
spin induced by the substrate and about the normal indu
by collisions! cannot be resolved experimentally. Therefo
while we can observe the effect of the subtle interplay
tween the transference of linear and angular momenta du
collisions, we cannot resolve the contribution to each deg
of rotational freedom. This implies that the values of t
coefficient of normal restitution and inelasticities presen
below areeffectivequantities.
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Two smooth particles that undergo an inelastic collisi
with a relative velocity between particlesv125v12v2, will
obey the reflection lawv12* •ŝ52av12•ŝ, wherea is the

normal component of the restitution coefficient andŝ is the
unit vector connecting the centers of the particles. Having
efficient method for collision identification, we are able
measure the relative velocities of two particles before a
after collision events. The coefficient of normal restitutio
during a binary collision is given by

a52
~ v̄12* •ŝ !

~ v̄12•ŝ !
, ~3!

where the overbar denotes average over three precollisi
or postcollisional velocities measured in the ROI describ
above@see Fig. 1~b!#. The angle between the relative veloc
ties of two colliding particles is given by

u5cos21~ v̄12• v̄12* !. ~4!

Thus we can characterize the coefficient of restitution a
function of u. The probability distributionsP(a) for 60°

FIG. 4. The distribution of the normal component of restituti
a versus 60°<u<180°, the relative angle of incidence betwee
particle velocities.~a! Nl51, b52.0, ~b! Nl52, b52.0, ~c! Nl

53, b52.0, ~d! Nl54, b52.0, ~e! Nl54, b54.0, ~f! Nl

55, b54.0. The value of thez axis for each graph is the prob
ability of a collision giving a value ofa in a range ofu1Du, where
Du52°
1-4
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COLLISION STATISTICS OF DRIVEN GRANULAR MATERIALS PHYSICAL REVIEW E67, 041301 ~2003!
<u<180° for eachNlb, are shown in Figs. 4~a!-4~f!. Data
for u,60° suffers from a lack of statistics and therefore
not included. Each graph represents the probability of
inelasticity having a valuea for a range ofu1Du, where
Du52°. P(a) follows a very broad distribution of value
over all u, and have a decreasing mean value as functio
f @see Fig. 5~a!#. Thus we find that the coefficient of rest
tution can have a broad distribution of values for the sa
impact angle.

We also measured the energy loss due to a collision
function of Nlb. The ratio of the magnitudes of the relativ
velocities before and after a collision,

h5
uv̄12* u

uv̄12u
, ~5!

determines theenergyrestitution coefficient, (h25a2 if all u
are averaged!. Figure 5~b! shows the distributions of mea
sured values ofh shifted for clarity. We find that a pea
exists at a value that is consistent witha2. Furthermore there
exists a power-law tail for values ofh.1, which has been
interpreted as arandom inelasticity@39#. The appearance of
tail at highh implies that the rotational degrees of freedo
are actively transferring energy to translational motion d
ing a collision.

FIG. 5. ~Color online! ~a! The mean value of the distributions o
a shown in Fig. 4 averaged over 60°>u>180°, as a function of
the average covering fractionf. The bars indicate the spread in th
distribution ~b!. The distribution of energy inelasticities given b
Eq. ~5! for (x) Nl51, b52.0, (x) Nl52, b52.0, (x) Nl

53, b52.0, (L) Nl54, b52.0, (h) Nl54, b54.0, (s)Nl

55, b54.0. Each distribution is shifted vertically for clarity.
04130
e

of

e

a

-

IV. RESULTS

A. Distributions of paths and times

We measure the distribution of paths lengths from the
geometric distance between collision events defined in
ROI at eachNl b @Figs. 6~a!-6~f!#. By basic kinetic theory
arguments@40#, the distribution of path lengths for an elast
hard-sphere gas~and by a similar treatment the distributio
of free times! is given by

P~ l !5~2A2f!e22A2f l . ~6!

The distribution therefore should follow a simple exponent
form depending only on the density. However, it is cle
from the dashed lines in Figs. 6~a!-6~f! that the simple form
given by Eq.~6! does not describe the behavior over alll.

The distributions of times between collisionsP(t) @Figs.
7~a!-7~f!# is also measured and shows similar behavior
that of the path length distributions, that is an overpopulat
of the short-time bins. This should be expected from
simple relationship between the displacement and the ti
However, it is worth noting to mention that the ratio ofl /t
versus the path lengthl, is not a constant over all values ofl,
implying that the average speed of the system depends on
distance or time between collisions. Elastic hard spheres
have a mean free path that is simplyl̄ 5 v̄ t̄, wherev̄ and t̄

FIG. 6. ~Color online! The probability distributions of path
lengthsP( l ) versusl, on a log-linear scale, andinset log-log scale
~a! Nl51, b52.0, ~b! Nl52, b52.0, ~c! Nl53, b52.0, ~d! Nl

54, b52.0, ~e! Nl54, b54.0, ~f! Nl55, b54.0. The dashed
line shows the theoretical form given by Eq.~6! derived for elastic
particles, and the solid line is an empirical fit given by Eq.~7a!.
Table II shows the fit parameters.
1-5
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D. L. BLAIR AND A. KUDROLLI PHYSICAL REVIEW E 67, 041301 ~2003!
are the average speed and collision time, respectively. A
the mean free path can be derived directly from the distri
tion of path lengths,l̄ 5*0

`lP( l )dl, whereP( l ) is given by
Eq. ~6!. Grossman, Zhou, and Ben-Naim@6# have interpo-
lated how the mean free path for a granular system shoul
modified to account for higher collision rates due to
creased density. Although the interpolation gives a qual
tively accurate correction for passing between the high
low density limits, the actual distribution of path lengths h
not been measured or calculated for a granular gas.

We have found an empirical form that well describes
measured distributions of path lengths and free times,

P~ l !5a~ l !2be2cl, ~7a!

P~t!5a~t!2be2ct, ~7b!

wherea,b,c for the path lengths and free times are shown
Table II for all Nlb. This form appears to capture both th
shortl andt power-law behavior. In the dilute case the for
returns to the theoretical prediction for larger path length

From the distribution of path lengths and free times,
calculate the mean free path and time by utilizing the fitt
form and its parameters. The ratio of the mean free pat
the mean collision time should determine the average sp

v̄ in the ROI where the distributions are measured. We h
taken the ratios of the integrated distributions,

FIG. 7. ~Color online! The probability distributions of free time
P(t) versust, on a log-linear scale~a! Nl51, b52.0, ~b! Nl

52, b52.0, ~c! Nl53, b52.0, ~d! Nl54, b52.0, ~e! Nl54, b
54.0, ~f! Nl55, b54.0. The solid line is a fit given by Eq.~7b!.
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v̄5
l̄

t̄
5

E
0

`

lP~ l !dl

E
0

`

tP~t!dt

, ~8!

and compared that to the average of the speed distribu
^vx,y& in the same ROI. Figure 8 shows both the measu
ments for allNlb. The agreement is within 10% over th
entire range ofNlb indicating that the proposed forms i
Eqs.~7a! and~7b! quantitatively capture the behavior of th
distributions.

B. Velocity autocorrelation

The velocity autocorrelation function~VAF! is computed
for the x components of the velocities within an ROI b
using the following@41#:

Cv~ t !5
1

NpNstmax
(

i , j 50

Np ,Ns

(
Dt51

tmax

vi j ~ to!•vi j ~ to1Dt !, ~9!

whereNs is the total number of data sets,Np is the number
of particles andtmax is the total number of time origins
Figure 9~a!, shows the measured values of the VAF norm
ized by ^v(0)2& in our system.

In simulations of hard-sphere fluids, Alder and Wai
wright @42# first found that the form for the VAF was

TABLE II. Fitting parameters for Eqs.~7a! and~7b!. The values
are arrangeda(a) for P( l )@P(t)#, respectively. The (•••) corre-
spond to the values forP(t).

Nl b a(a) b(b) c(c)

1 2 0.031~0.0027! 0.428~0.511! 0.154~2.969!
2 2 0.025~0.0025! 0.603~0.665! 0.393~6.024!
3 2 0.008~0.0003! 0.932~1.203! 0.742~8.306!
4 2 0.003~0.0008! 1.258~1.209! 1.489~16.91!
4 4 0.002~0.0002! 0.970~1.043! 3.171~26.45!
5 4 0.002~0.0005! 1.096~1.384! 2.887~28.33!

FIG. 8. ~Color online! The average speed measured for ea

Nlb. (s) v̄ obtained from Eq.~8!, and (L) ^v& measured from the
mean of the speed distribution. The two independent measures
similar values over the entire density range.
1-6
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COLLISION STATISTICS OF DRIVEN GRANULAR MATERIALS PHYSICAL REVIEW E67, 041301 ~2003!
strongly depended on the density of the system. For very
densities the characteristic form of the correlation funct
was given simply by

Cv~ t !5^v~0!2&e2t/tE, ~10!

wheretE is the Enskog collision time. If the density of th
system is increased however, the form of Eq.~10! breaks
down andCv(t) can become negative with long range ta
due to the caging of particles by their neighbors. We fi
that thelowestdensity case becomes, and remains negativ
correlated after the decay from̂v(0)2& @Fig. 9~a!#. This ap-
pears to be in contradiction with Ref.@42# but is due to a
finite-size effect. That is, the particles are interacting f
quently with the side walls at low densities, which rever
the sign of velocity vectors, thus leading to the observ
anticorrelation. The predominance of the sidewall inter
tions are screened for the intermediate densities due to
increased number of particle-particle collisions, therefore
anticorrelations are observed.

FIG. 9. ~Color online! ~a! The velocity autocorrelation function
Cv(t). ~b! The mean square displacement in thex direction for each
Nlb for t5022.5 s.Inset: the short time behavior indicated by th
box in the main figure.~c! The diffusion constants calculated fo
eachf, where (s) corresponds to the numerical integration ofCv
from ~a!, and (L) corresponds to the least squares fit ofCx2 from
~b!. The dashed line shows the kinetic theory result for a fix
temperature, which is given by the average measured value
this range off.
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C. Mean square displacement

To determine the mean square displacement of thex com-
ponent of the particle positions@Fig. 9~b!#, by using the se-
quential time zeros for each trajectory@41# given by

Cx2~ t !5
1

NpNstmax
(

i , j 50

Np ,Ns

(
Dt51

tmax

uxi j ~ to!2xi j ~ to1Dt !u2,

~11!

whereNs is the total number of data sets,Np is the number
of particles, andtmax is the total number of time origins. Fo
these measurements, the ROI is allowed to increases in
along they direction asNl decreases. We have chosen
make this increase to ensure that particles at lowNl have had
the opportunity to undergo a collision while under consid
ation.

The long time behavior ofCx2 for eachNl b @Fig. 9~b!#,
displays linear dependence on time, indicating diffusive
havior. However forNl51, Cx2 clearly shows a crossing
from one linear regime to another, which may be a poss
indication of finite system size for low density. For sho
times, @Fig. 9~b! inset# the behavior is ballistic as indicate
by the quadratic increase ofCx2 in time. AsNl is increased,
the range of the ballistic regime dramatically decreases in
cating a decrease in the Enskog collision timetE . The bal-
listic and diffusive regimes are consistent with what is e
pected for kinetic theory of elastic, finite-sized particles.

D. Self-diffusion

The self-diffusion constantD, can be determined for a
system of particles by either evaluating the time integral
the velocity autocorrelation function,

D5E
0

`

Cv~ t !dt, ~12!

or using the relationship between the mean square displ
ment of the particles and time over long times,

D5 lim
t→`

1

2dt
Cx2~ t !, ~13!

whered is spatial dimension. From kinetic theory@40#, the
diffusion constant of a two-dimensional gas is calculated

D5
s

8fg~s! S pT

m D 1/2

, ~14!

whereg(s) is the radial correlation function at contact@43#
given by

g~r 5s!5
1627f

16~12f!2
. ~15!

By numerically integrating the curves in Fig. 9~a!, and per-
forming a least squares fit to the data in Fig. 9~b! after the
ballistic regime, we obtain the self-diffusion constant@see
Fig. 9~c!#. We find that the values for the self-diffusion from

d
er
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Eqs.~12! and ~13! are self-consistent. The solid line in Fig
9~c! shows the form of Eq.~14! with the temperatureT given
by the granular temperature. The granular temperature is
fined by

Tx,y5
1

2
m@^vx

2&1^vy
2&#, ~16!

wherem is the mass of the particles and^•••& denote aver-
ages over the component distributions@see Sec. IV E#. The
other constants in Eq.~14! are determined from system pa
rameters. The theory for the diffusion of elastic particl
given by Eq.~14! closely matches our results for allf. Thus
we show that the effects of inelasticity on the self-diffusi
are small.

E. Velocity distributions

The distribution of thex andy components of the particle
velocities are plotted in Figs. 10~a!-10~f!–12~a!-12~f!. The
distributions correspond to velocities that are measu
within a region of interest. The ROI is defined by making
narrow slice across they direction that is centered upon th
peak in r(y) while excluding particles lying within a dis

FIG. 10. ~Color online! The velocity distribution functions
P(vx) versusvx on a linear-linear scale.~a! Nl51, b52.0, ~b!
Nl52, b52.0, ~c! Nl53, b52.0, ~d! Nl54, b52.0, ~e! Nl

54, b54.0, ~f! Nl55, b54.0. The solid curves are a lea
squares fit to a Gaussian form given by Eq.~17!. Note that the
deviation from a Gaussian distribution extends all the way to
lowest velocity bins. Each distribution corresponds to;23106

unique velocities that are found within the ROI defined in the te
04130
e-

,

d

tance of 3s from the side walls. We utilize this ROI to en
sure that large gradients inr(y), and the clustering produce
by the side walls, do not affect the measured VDFs. E
distribution correspond to;23106 unique velocities that
are found within our ROI. The velocities of elastic particl
follow a distribution given by the Maxwell-Boltzmann form

P~v!5~2pkBT!2d/2e2v2/2kBT, ~17!

where d is the dimensionality of the system andT is the
temperature of the heat bath that the system is in con
with. Hence, if a system of particles is at equilibrium, i
temperature determined by the width of the distribution
particle velocities. Equation~17! is fit to the data for the
x-components of the velocities, and is shown on both lin
and logarithmic scales~Figs. 10 and 11!. We observe that the
form given by Eq.~17! displays deviations both at low an
high velocities. The distributions of velocities are norma
displayed in a log-linear fashion to accentuate the tails of
VDF; however, this suppresses the deviations at low velo
ties. By plotting the distributions on a linear scale we disp
the more statistically significant deviations from Eq.~17!.

In a recent experimental work@17#, a two-dimensional
collection of particles is driven into a steady state. Usi

e

.

FIG. 11. ~Color online! The velocity distribution functions
P(vx) versusvx on a log-linear scale.~a! Nl51, b52.0, ~b! Nl

52, b52.0, ~c! Nl53, b52.0, ~d! Nl54, b52.0, ~e! Nl54, b
54.0, ~f! Nl55, b54.0. The solid curves are a least squares fit
a Gaussian form given by Eq.~17!. Here the apparent deviations i
the tails of the distribution functions are present.
1-8
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analysis techniques that are similar to ours, the authors
posed a governing form for the VDF given by

R~v!5Ae2Buvx /Txu21.5
, ~18!

whereA andB are constants andTx is thex component of the
granular temperature defined in Eq.~16!. They claim to have
seen auniversalVDF which they parametrized by a sing
value, regardless of the system density or the value of
inelasticity of the particles. From our VDFs, whose cor
sponding densities range over an order of magnitude
where the average inelasticity varies by nearly a factor
two, we cannot find any single parameter fit that descri
the overall form.

The VDFs for they components,P(vy) versusvy for each
Nlb in our ROI are also measured@see Fig. 12~a–f!#. The
VDFs are highly skewed by the asymmetry in the drivi
against the direction of gravity. To identify the effects th
the asymmetry inP(vy) has uponP(vx), we have separate
the vx distributions by the sign ofvy , i.e., P(vxu1vy ;
2vy). We have found that the form for these condition
distributions are not affected by the sign ofvy , however, we
do note that their widths differ, witĥvx&1vy

,^vx&2vy
.

FIG. 12. ~Color online! The velocity distribution functions
P(vy) versusvy on a log-linear scale.~a! Nl51, b52.0, ~b! Nl

52, b52.0, ~c! Nl53, b52.0, ~d! Nl54, b52.0, ~e! Nl54, b
54.0, ~f! Nl55, b54.0. The large skewness in the distributio
for the negative values ofvy is due primarily to the driving from the
bottom wall. Particles that are moving in the2y direction are leav-
ing the moving wall.
04130
o-

e
-
d
f
s

t

l

We also measure thex component of the granular tem
peratureTx @see Eq.~16!#, to probe the scaling behavior o
the velocity distributions. Figure 13~a! shows the measure
granular temperature as a function of distance from the d
ing wall. At low densities (Nl<2), Tx(y) initially increases
and then decays. In contrast, for (Nl>3), Tx(y) has a dis-
tinct minimum. We note thatTx(y) never reaches a consta
value and the minimum~maximum! does not correspond to
the peak inr(y).

To further show the nonuniversality of the VDFs, we pl
the kurtosis as a function of distance from the driving wa
The kurtosis is obtained by the following:

g5
^vx

4&

^vx
2&2

. ~19!

If the velocity distribution is a Gaussian theng53, shown
by the solid line in Fig. 13~b!, and if the distribution is given
by Eq.~18! theng53.576. We find that the measured valu
for g exceed the value for a Gaussian and also vary a
function of distance from the driving. This analysis is co
sistent with our previous results@21# and recent MD simula-
tions of Brey and Ruiz-Montero@27# that closely mimic our
experiment.

F. Equation of state

The equation of state for ideal gases relates the pressu
the temperature and the density,

P5nkBT, ~20!

FIG. 13. ~Color online! ~a! The granular temperature12 m^vx
2& as

a function of distance from the driving wall for eachNlb. If the
isothermal atmosphere condition was satisfied these would be
stant values for ally above the peak inr(y). For values ofNl.2
the temperatures follow a nonmonotonic form that has a dist
minimum. ~b! The kurtosisgx measured fromP(vx) as a function
of the distance from the driving. The values given by a Gauss
~solid line! and the form proposed in Eq.~18! ~dashed! are only
attained very far from the energy source.
1-9
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wheren is the number density andkB is Boltzmann’s con-
stant. If we assume that kinetic theory is valid for a granu
gas, we can immediately relate the average squared sp
^v2& of the particles to the temperature,

m^v2&5kBT, ~21!

for each degree of freedom. Figure 14~a! shows the pressure
P5(nm/2)^vy

2& as a function of distance from the drivin
wall. Due to the effects of gravity on the particles, the de
sity should follow the well-known atmospheric law,

r~y!5r0e2mgy/Ty, ~22!

which assumes a constant temperature. We find that the
perature is not constant for anyNlb @see Fig. 13#. This is
also consistent with our observations of the density distri
tions in Sec. III A, wherer(y) deviates from the form of Eq
~22!.

Momentum balance implies that the gradient of the pr
sure is related ton by the following equation:

dP

dy
52nmg, ~23!

FIG. 14. ~Color online! ~a! The pressureP(y)5rT as a function
of y, the distance from the driving wall.~b! The ratio of the mass
density to the granular pressure force (1/mr)(dP/dy) as a function
of distance from the driving wall. The solid line corresponds tog8
for b52°. ~c! The same as~b! for b54°. The obvious deviation
for regions of high density show a breakdown of the simple tre
ment of the granular equation of state in regions of high densit
04130
r
ed,

-

m-

-

-

wherem is the mass of a particle andg is the acceleration of
gravity. Due to the nonvanishing gradient of temperature
general form of the pressure gradient must be taken
account

dP

dy
5Ty

dn

dy
1n

dTy

dy
. ~24!

We find that Eq.~24! is indistinguishable from the numerica
derivative ofd(nTy)/dy.

We have measured the pressure gradient acting on a
ticle held at a particulary by evaluating

2S Ty

nmD d~nTy!

dy
5g8, ~25!

whereg85 5
7 g sin(b). Figure 14~b! shows the left-hand side

~lhs! of Eq. ~25! for b52, and Fig. 14~c! for b54. The
solid lines correspond to the values ofg8 with b52,4 found
by utilizing Eq.~1! and the data in Fig. 2~b!. We find that the
measured values systematically overestimate the actual
ues forg8 in the region where the density reaches it’s ma
mum. Our interpretation assumes a dilute gas, therefore
deviations near the peak inr(y) are not surprising.

To incorporate the effects due to increased density,
have obtained the pressure from the interpolated equatio
state derived by Grossman, Zhou, and Ben-Naim@6#,

P5nTy

nc1n

nc2n
, ~26!

wherenc is the close packing number density. Utilizing E
~26! to calculate the gradient of the pressure@Eq. ~23!#. How-
ever, we find that the disagreement persists between the
of Eq. ~25! and the measured value ofg8 near the peak in
r(y).

V. SUMMARY AND CONCLUSION

In this paper, we have presented a statistical analysis o
inelastic gas that is constrained to two dimensions. Utiliz
high-speed digital image processing we perform long-ti
tracking over a broad range of densities. Not surprisingly,
observe that the statistical properties of inelastic gases d
ate from expectations of the kinetic theory for smooth elas
particles. The most apparent discrepancies are found in
distribution of free paths and times and the distribution
particle velocities.

To characterize our system we measure the effective
efficient of restitution from the relative precollision and pos
collision velocities of particles undergoing binary collision
We find that the normal component of restitution and t
energy inelasticity are not single-valued, but have a distri
tion of values even for the same impact parameters.
mean value of the normal components of restitution syste
atically decreases with the system density. We also find
the energy inelasticity can take on values greater than un
demonstrating a transference of energy from the rotationa
linear degrees of freedom. In a recent numerical work Ba
and Trizac have measured the projected one-dimensiona

t-
1-10
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efficient of restitution Refs.@39,44# and the energy inelastic
ity. Their interpretation is that the coefficient of restitutio
and the energy restitution are random variables that cha
terize collisions, consistent with our findings.

The distribution of path lengths and free times are sho
to have an overpopulation of the short distance and t
bins. We have proposed an empirical form in Eqs.~7a! and
~7b! which capture the overall behavior of the observed d
tributions of paths and times. By integrating these distrib
tion functions, we are able to measure the mean free path
mean time. The average speed obtained from the speed
tribution and from the mean free path and time are in cl
agreement. Inspired by these finding, Paolottiet al. @26# have
reported similar results for the mean free time in a simulat
that mimics our system.

Particle diffusion constants are measured from two in
pendent long-time averaged correlation functions. The m
square displacement and the velocity autocorrelation fu
tion are calculated. By then performing least squares fitt
and numerical integration to these quantities, respectiv
the self diffusion over a broad range in density is calculat
We find that the diffusion constants are similar to that o
two-dimensional gas over this density regime. Therefo
long-time averaged correlation functions seem to accura
capture the diffusive properties of granular gases.

We find that the distribution of particle velocities perpe
hy

f
e,

no
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dicular to the direction of driving does not have a univer
form, but depends on both the density and the inelasticity
addition, we find a distinct asymmetry in the VDFs paral
to the driving direction. We measure the granular tempe
ture as a function of distance from the driving source a
find nonmonotonic behavior. For low densities, the granu
temperature has a distinct maximum and for high densi
there exists a distinct minimum. The temperature inversio
higher densities has recently been described via granular
drodynamics by Ramı´rez and Soto@45#. However, the cross-
over from T(y) having a maximum~for low densities!, to
T(y) with a minimum at high densities has not been d
cussed in any kinetic or hydrodynamic models.

By using kinetic theory and simple hydrodynamics w
have tested the force balance between the gradient of
pressure exerted by a granular gas on a particle and the f
due to gravity@Eq. ~23!#. We find strong deviations in the
regions of high density. A simple hydrodynamic form, th
describes the behavior over all densities, is not yet availa
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