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Collision statistics of driven granular materials
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We present an experimental investigation of the statistical properties of spherical granular particles on an
inclined plane that are excited by an oscillating side wall. The data is obtained by high-speed imaging and
particle tracking techniques. We identify all particles in the system and link their positions to form trajectories
over long times. Thus, we identify particle collisions to measure the effective coefficient of restitution and find
a broad distribution of values for the same impact angles. We find that the energy inelasticity can take on
values greater than one, which implies that the rotational degrees of freedom play an important role in energy
transfer. We also measure the distance and the time between collision events in order to directly determine the
distribution of path lengths and the free times. These distributions are shown to deviate from expected theo-
retical forms for elastic spheres, demonstrating the inherent clustering in this system. We describe the data with
a two-parameter fitting function and use it to calculate the mean free path and collision time. We find that the
ratio of these values is consistent with the average velocity. The velocity distributions are observed to be
strongly non-Gaussian and do not demonstrate any apparent universal behavior. We report the scaling of the
second moment, which corresponds to the granular temperature, and higher order moments as a function of
distance from the driving wall. Additionally, we measure long-time correlation functions in both space and in
the velocities to probe diffusion in a dissipative gas.
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[. INTRODUCTION interactions in these systems arise due to collisions between
particles and the side wall44]. Following this work, Wild-

Granular material represent a type of matter not well deman, Huntly, and Hanse[il6] were able to do long time
fined by conventional means. Although each granular parparticle tracking to measure diffusion constants by interpret-
ticle is obviously solid, an assemblage of these particlesng mean square displacement data over a very broad range
show distinctly nonsolid behavior when subjected to externabf density. More recently, in a similar apparatus, Rouyer and
forces[1]. In the rapid flow regime, the interaction between Menon[17] report that their VDFs have a universal form that
the grains is collisional and the system resembles a densmn be parametrized by a single variable, the granular tem-
granular gas Indeed, the kinetic theory for dense gases for-perature. A different method of energy injection utilizes large
mulated by Chapman and Enskf®] have been modified to flat container that is vibrated vertically to excite a sub mono
include the dissipative nature of the collisiof4]. How-  layer of particled10,18,19. The velocity of the patrticles in
ever, a number of approximations have to be made in anthe horizontal plane are measured and are found to follow a
calculation that can be only validated by experiments. Furnon-Gaussian distribution. However, the impact of the veloc-
thermore, even if key assumptions such as equipartitioity gradient in the vertical direction on the observed distri-
breakdown[5-7], it is important to have a measure of the butions are not taken into account because these components
failure to guide further development. cannot be measured.

Energy has to be constantly supplied from an external Our experiment is a variation of the vertically vibrated
source to observe a steady state in granular gas systenapparatus. Spherical particles are constrained to roll on an
Therefore, model experiments consist of granular particleinclined two-dimensional surface. This geometry allows for a
inside a container where energy is continuously injected at direct investigation of the interplay between energy injected
side wall[8-10]. Thus gradients are present in experimentalat the side wall and the dissipation through inelastic colli-
granular systems, which implies that care must be takesions. In addition, the inclination reduces the effects of grav-
when comparing results to nonequilibrium kinetic theoryity, therefore minimizing shock waves. This system has been
[11-13. With advances in high-speed image acquisition, it isused to demonstrate clustering and collapse when the inter-
now possible to obtain positions of particles several timegarticle collision frequency is much greater than particle-
between collisions. However, particle positions and veloci-driving wall collision frequency9]. Recent works have ex-
ties can be obtained accurately only in two dimensions bylored a full range VDFs, from very near Gaussian behavior
direct imaging thus forcing certain constraints on the geomto highly non-Gaussian distribution functions, as well as ve-
etry of the system. locity correlationg20,21].

One of the first such experiments to investigate velocity In addition to analytical techniques and experiments, sev-
distribution functiongVDFs) utilized an apparatus in which eral groups have utilized computer simulations of inelastic
particles are vibrated vertically inside a narrow transparenhard spheres with both Molecular Dynam[d®,22—-27 and
box [8,14,13. Maxwellian statistics were reported for the Direct Simulation Monte Carl§28—-32 techniques to inves-
vertical and horizontal velocity components of the particlestigate the statistical properties of granular gases. Using
parallel to the plane of the transparent side walls. AdditionaDSMC simulations, Baldassat al.[30] have found veloc-
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ity and density distributions that are qualitatively similar to Camera
our previous experimental resu[@1]. Recent work by Brey

and Ruiz-Montero[27] investigate how the second and (a)
fourth moments of the VDFs scale as a function of distance

from the driving wall, which until now, have not been ex-
perimentally tested.

In this paper, we report on the statistical properties of a
gas of inelastic particles constrained to two dimensions. An
inclined geometry reduces the gravitational acceleration act:
ing on each particle which results in lower mean velocities.
The combination of slow dynamics and high-speed imaging
allows us to accurately identify the particle trajectories and
collision events. By using velocities before and after a colli-
sion event, we measure the normal coefficient of restitution.
We find that these quantities are found to be broadly distrib-
uted for the same impact parameters. By calculating the dis
tance and time between collision events we measure the dis 0 [ | Fen. Gen. ™ computer
tributions of free paths and times. We find that these ki s
distributions do not follow the result found from kinetic
theory. The path and time distributions have an overpopula-
tion of short distance and time bins, demonstrating the inher-
ent clustering present in granular gases. We propose an en
pirical form that captures the distributions, which is then
used to calculate the mean free path and free time as a func
tion of density. The particle trajectories are also used to mea
sure the mean square displacement, velocity autocorrelatior
and diffusion rates. The distribution of particle velocities are
measured with a variation in density of an order of magni-
tude and show distinctly non-Gaussian behavior with no ap-
parent universal form. We compare our results to recent ex-
periments, as well as theoretical and simulation treatments o
equivalent systems.

The paper has the following structure. In Sec. Il we
present the experimental apparatus and imaging method:
Section Il provides the overall system characteristics such a: < 3lem ————————>
the density distributions and coefficients of restitution and
inelasticities. We then present our analysis of the trajectories FIG. 1. (Color onling (a) Schematic diagram of the experimen-
of the particles in Sec. IV. Finally, in Sec. V we summarizetal setup. The inclined plane is a smooth glass surface, the side

our results in the context of granular kinetic theory and simuwalls and driving wall are stainless steel so that the particle-
lations. boundary collisions approximate those between particles. The driv-

ing is produced by a solenoid connected to the lowest side wall. The
angle of inclination3, can be varied fronB=0°-8°, the values of
Il. EXPERIMENTAL METHODS B we have chosen are 2°0.1° and 4%-0.1°. (b) An image of the

. . . . . system taken from above. The bottom right corner is considered the
The experimental configuratiofFig. 1], con5|_sts_of a origin of our coordinate system (0,0). The white bars allow us to
1000X600 (31 cmx 19 cm) glass plane that is inclined at 5.k the position of the driving wall.

an angleB with the horizontal. The particles are stainless

steel with diametesr=3.175 mm and a high degree of sphe- 33120-A wave-form generator that is and subsequently am-
ricity (8o/o=10"*). The number of particles, measured in plified by an HP 6824A Amplifier. The inclination of the
number of monolayersl, across the driving wall, is varied plane can be varied betwe@0°-8°, for our experiments
betweenN,=1-5 in steps of one layerviz., from N, the angle was fixed g8=2°+0.1° or 4°£0.1°. In the ex-
=100-500 in steps of 100, whel, is the number of par- treme case oB<1°, the particles essentially cease to inter-
ticles. The energy source is an oscillating side wall, drivenact with the energy source and cluster at the side opposite of
by a solenoid, that is located as shown in Figa)1The the driving.

driving signal is a 10 Hz pulse with a velocity during each  The particles are imaged using a Kodak MotionCorder
pulse of~40 cms L. The driving frequency and amplitude SR1000 high-speed digital camera. We measure the positions
were chosen to ensure that no phase dependence on the cehall particles contained in the apparatus for 1365 frames at
ter of mass is observe@t frequencies below 2 Hz the par- 250 frames per second at full spatial resolution of
ticle positions are phase locked with the drivinghe signal 512X 480 pixels. These digital images are then transfered to
is produced with a computer interfaced Aglient Technologiesa computer and analyzed using a centroid method that allows

Soleniod
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FIG. 2. (Color online (a) Linked particle positions over 1365
time steps K;=3). We can determine patrticle collision events with
a high degree of accuracy from trajectories such as thjsThe
parabolic path of a particle. We use fixed values #qrand g
=980 cm s 2 to measuragy’ = 3g sinB. The fit givesp=2.2°, the
deviation from the measured value gfis 9%.

us to resolve each particle to subpixel accuracy. After each
particle is located the positions are then connected in time to
form continuous trajectories for 5.46 s. Our coordinate sys-
tem is such that thr,y axes are parallel and perpendicular to

the driving, respectivelysee Fig. 1 A typical particle tra-
jectory is shown in Fig. @). Multiple collision events can be

distinguished with nearly straight paths between each event.

A patrticle that freely rolls on the inclined plane will follow a
parabolic trajectorysee Fig. 2b)]. The particle trajectory is
given by

2

5 x )
YO0 =5 5gsinp), (1)

whereg is the acceleration due to gravity, is measured
from the width of the parabola, and tBefactor is due to the
moment of inertia for a solid sphere.

Ill. SYSTEM CHARACTERISTICS

A. Density distributions

PHYSICAL REVIEW E57, 041301 (2003

TABLE |. Experimental values of the number of layé\s, the
angle of inclinationg, and the resulting measured valuedaf N,
the number of particles in the system, is given for clarity.

N, B ¢ Np

1 2.0 0.022 100
2 2.0 0.068 200
3 2.0 0.138 300
4 2.0 0.191 400
4 4.0 0.302 400
5 4.0 0.581 500

measure¢ by defining a region of interestROI) that is

centered about the peak jiify), [Fig. 3(b)] whose extent in
they direction is limited to* 10%o0fp(y). The ROI scheme
excludes all particles that are withinr3f the side walls to

04 x .
>N =1p=2
(@) ——aN=2,p=2
03 ¢ A—ANI:'S,B:Z
—oN =4 |3=2
~~ 4,|3=4
Z 02 =5,p=4

[aR

10
y (cm)

FIG. 3. (Color onling (a) The densityp(x) versusx for all N, .
The obvious clustering due to inelastic collisions at the side walls is
demonstrated here. Also, &§ is increased the system becomes
more inhomogeneous across the cell. This effect is most likely due
to the onset of clustering instabilities that have been recently dis-
cussed33-34. (b) The aerial density plotg(y) for eachN, and3
on a log-linear plot. The density is measured in a particular area
by integratingp(y) over that region of interest. The total under each
curve corresponds to the average area fraction for that particular

The results presented will be given in terms of the numben, . The solid line shows an exponential fit over the tail of the

of single layers across the cel, and the angle of inclina-
tion B, which determine the area fractign[see Table]. We

distribution of N;=200. However, we will demonstrate that the
isothermal atmosphere is not obeyed for any density.
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ensure that clustering due to the side walls does not affec o.12
our resultysee Fig. 8)]. The over-plotted box in Fig.(b) 008
demonstrates the ROI definition fgr=0.13. A more strin- =2
gent division of the system in thg direction will be used 160
when the behavior of the temperature, pressure, and kurtosi 6140
are discussed in Sec. IV. The form of the density in yhe £ 120§
direction is similar to that found in Ref§14,36. However, ‘
we find that the form of the tails gi(y) at higher values of

N, B deviate from Boltzmann distribution. This implies that
the law of isothermal atmospheres breaks down for granula
systems as we shall also see when we discuss the scaling
the granular temperature in Sec. IV E.

0.08

B. Particle collisions

We identify collision events from the trajectories by using £ 120
the following algorithm. Velocities are constructed as finite * "%
differencesv;= Ax/At, whereAx=x(t;) —x(t;) and the sub- 60
scriptsi,j represent positions separated by the time differ- ’
enceAt=4 ms. All velocity vectors are compared sequen-

tially to find direction changes given by

y=cos }(v;-v)), 2

wherev=V/|v| the unit vector of the calculated velocity. If
20°< <180 the proximity of all particles at the same time

instant is checked. If a particle is found within a radiws 86%
+ Ao, whose velocity also satisfy EQ) it is considered as 00 B>y o 05 19 1520
a candidate for a collision. To assure that recollisions are not
occurring, we maintain a record of the identity of the previ-

ous collision partner. We then ensure that those particles cah

FIG. 4. The distribution of the normal component of restitution
versus 60% 0<180°, the relative angle of incidence between
6(|oarticle velocities.(a) Nj=1, 8=2.0, (b) N;=2, 8=2.0, (c) N,

recollide if and only if the partner particle has undergone L3 5=20, (d) N=4, =20, (& N=4, 8=40, () N,

collision with yet a third particle. If particles pass these re-_g B=4.0. The value of the axis for each graph is the prob-
qu'r,ements_‘ then a CO_"'_S"on hfas occurred. To extend th_e aIé\bility of a collision giving a value o& in a range off+ A 6, where
gorithm to include collisions with the boundary walls we first 5 o_".

check if Eq.(2) is satisfied. We then check if the particle’'s

center is withino + Ao of a boundary and it's velocity com- 1y smooth particles that undergo an inelastic collision
ponent perpendicular to the wall is reversed. with a relative velocity between particleg,=v;—Vv,, will
obey the reflection law?, o= — av;, o, where a is the
C. Coefficient of normal restitution normal component of the restitution coefficient ands the

The loss of energy in a collision is determined by theun?t vector connecting th_e_cen_ters pf the_: particles. Having an
coefficient of restitution. If particles are roughi,e., fric- efficient method f(_)r coII|S|0_n_ identification, we are able to
tional) both the the normal and tangential components musineasure the relative velocities of two particles before and
be considered when describing inelastic particle collisionsafter collision events. The coefficient of normal restitution
Using simulations and theory, McNamara and Ludjgg]  during a binary collision is given by
have described the lack of energy equipartition between the — -
linear and rotational degrees of freedom for colliding rough __ (Vip o)
particles. As described in Sec. Il, the particles in our system « (712. o)’
must roll between collision events, which leads to complex
interactions at contadt38]. Angular momenta(both from  where the overbar denotes average over three precollisional
spin induced by the substrate and about the normal inducest postcollisional velocities measured in the ROI described
by collisions cannot be resolved experimentally. Therefore,above[see Fig. 1b)]. The angle between the relative veloci-
while we can observe the effect of the subtle interplay beties of two colliding particles is given by
tween the transference of linear and angular momenta during o
collisions, we cannot resolve the contribution to each degree 6=cos (v V},). (4)
of rotational freedom. This implies that the values of the
coefficient of normal restitution and inelasticities presentedlhus we can characterize the coefficient of restitution as a
below areeffectivequantities. function of 4. The probability distributiond(«) for 60°

()
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FIG. 5. (Color onling (a) The mean value of the distributions of
a shown in Fig. 4 averaged over 689=180°, as a function of
the average covering fractiap. The bars indicate the spread in the
distribution (b). The distribution of energy inelasticities given by
Eqg. (5) for (>) N;=1, B=2.0, >) N;=2, =2.0, >) N,
=3, =2.0, (¢) N=4, p=2.0, @) N;=4, B=4.0, (O)N,
=5, B=4.0. Each distribution is shifted vertically for clarity.

FIG. 6. (Color online The probability distributions of path
lengthsP(l) versusl, on a log-linear scale, anidsetlog-log scale
(@ N,=1, 8=2.0, (b) N;=2, 8=2.0, (c) N;=3, B=2.0, (d) N,
=4, =20, () Nj=4, p=4.0, (f) Nj=5, B=4.0. The dashed
line shows the theoretical form given by E) derived for elastic
particles, and the solid line is an empirical fit given by Eda).
Table Il shows the fit parameters.

< #=<180° for eachN,;B, are shown in Figs. (&)-4(f). Data IV RESULTS

for #<60° suffers from a lack of statistics and therefore is '

not included. Each graph represents the probability of the A. Distributions of paths and times

inelasticity having a valuer for a range ofg+A6, where We measure the distribution of paths lengths from the the

Af=2°. P(a) follows a very broad distribution of values geometric distance between collision events defined in our
over all §, and have a decreasing mean value as function oRo| at eachN, 8 [Figs. 6a)-6(f)]. By basic kinetic theory

¢ [see Fig. %a)]. Thus we find that the coefficient of resti- argumentg40], the distribution of path lengths for an elastic
tution can have a broad distribution of values for the samearg-sphere gagand by a similar treatment the distribution

impact angle. o of free time$ is given by
We also measured the energy loss due to a collision as a B
function of N, 8. The ratio of the magnitudes of the relative P(l)=(2V2¢)e 224, (6)

velocities before and after a collision,
The distribution therefore should follow a simple exponential

|Vl*2| form depending only on the density. However, it is clear
n==, (5)  from the dashed lines in Figs(&#-6(f) that the simple form
\ZP! given by Eq.(6) does not describe the behavior overlall

The distributions of times between collisioR§ ) [Figs.
determines thenergyrestitution coefficient, f>=ca?ifall ¢  7(8)-7(f)] is also measured and shows similar behavior to
are averaged Figure §b) shows the distributions of mea- that of the path length distributions, that is an overpopulation
sured values ofy shifted for clarity. We find that a peak Of the short-time bins. This should be expected from the
exists at a value that is consistent with. Furthermore there simple relationship between the displacement and the time.
exists a power-|aw tail for values 0f>1, which has been However, it is worth noting to mention that the ratio léf
interpreted as eandom inelasticitf39]. The appearance of a Versus the path lenglhis not a constant over all values lof
tail at high » implies that the rotational degrees of freedomimplying that the average speed of the system depends on the
are actively transferring energy to translational motion dur-distance or time between collisions. Elastic hard spheres will
ing a collision. have a mean free path that is simply v 7, wherev and =

041301-5
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TABLE IlI. Fitting parameters for Eq$7a) and(7b). The values

@) (b) are arrange@(a) for P(I)[P(7)], respectively. The (- -) corre-
4 spond to the values fdP(7).
] N, B a(a) b(b) c(c)
1 2 0.0310.0027 0.4280.51) 0.1542.969
o o i 2 2 0.02%0.0025 0.6030.665  0.3936.024
; T T(s) 3 2 0.0080.0003  0.9321.203  0.7428.306
“’_1 © ' ' 4 2 0.0030.0009  1.2581.209  1.48916.9)
10 ] 4 4 0.0020.0002 0.9701.043 3.17126.45
:10—2, 1 5 4 0.0020.0005 1.0961.389 2.887128.33
E: 10'3r =
10°F 1
10°F
T =5 " T fo [P(l)dl
i e ®
T f TP(7)dr
0
and compared that to the average of the speed distribution
(vxy) in the same ROI. Figure 8 shows both the measure-
: ments for allN,8. The agreement is within 10% over the
0.;14; 028 10° N 0226 entire range of\,3 indicating that the proposed forms in
TG (s

Egs.(7a and(7b) quantitatively capture the behavior of the

FIG. 7. (Color onling The probability distributions of free times  distributions.

P(7) versust, on a log-linear scalda) N;=1, 8=2.0, (b) N,
=2, B=2.0,(c) Nj=3, B=2.0, (d) Nj=4, =2.0,(e) Nj=4, B

J) N =< i B. Velocity autocorrelation
=4.0, (f) Ny=5, B=4.0. The solid line is a fit given by Eq7b).

The velocity autocorrelation functiofVAF) is computed
for the x components of the velocities within an ROI by

are the average speed and collision time, respectively. Alsg LJsmg the following[41]:

the mean free path can be derived directly from the distribu-

tion of path Iengthsl JolP(1)dl, whereP(l) is given by
Eqg. (6). Grossman, Zhou, and Ben-Naiff] have interpo-
lated how the mean free path for a granular system should be
modified to account for higher collision rates due to in-
creased density. Although the interpolation gives a qualitawhereNs is the total number of data sets, is the number
tively accurate correction for passing between the high an@f particles andty,, is the total number of time origins.
low density limits, the actual distribution of path lengths hasFigure 9a), shows the measured values of the VAF normal-
not been measured or calculated for a granular gas. ized by(v(0)?) in our system.

We have found an empirical form that well describes the In simulations of hard-sphere fluids, Alder and Wain-
measured distributions of path lengths and free times, wright [42] first found that the form for the VAF was

N N thax

E 2 Vi (to)

Cv(t) N N tmax i,j=0 At=

Vij(to+At), (9

24

P(=a(l) e, (78)

_1)

P(r)=a(7) Pe ¢, (7b)

—_
\S]

wherea, b, c for the path lengths and free times are shown in

Table 1l for all N,8. This form appears to capture both the

shortl and = power-law behavior. In the dilute case the form

returns to the theoretical prediction for larger path lengths. 0 0 0'2 0'4 0.6
From the distribution of path lengths and free times, we ’ 0 ' '

calculate the mean free path and time by utilizing the fitting

form and its parameters. The ratio of the mean free path to f|g. s. . (Color onling The average speed measured for each

the mean collision time should determine the average spquiB (O) v obtained from Eq(8), and (¢ ) (v) measured from the

v in the ROI where the distributions are measured. We havenean of the speed distribution. The two independent measures give

taken the ratios of the integrated distributions, similar values over the entire density range.

<v>,v (cms
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C. Mean square displacement
To determine the mean square displacement ok tb@m-

ponent of the particle positiof$ig. Ab)], by using the se-
guential time zeros for each trajectdd/l] given by

Np'Ns tmax
CoD= gNE 2y &, it =%t AD
p'Ns
(11)

max i,j=0 At=

80 - whereN is the total number of data sefd, is the number

4 of particles, and,, . is the total number of time origins. For
these measurements, the ROI is allowed to increases in size
along they direction asN, decreases. We have chosen to
make this increase to ensure that particles atNpwmave had
20 | (©) tr][ga opportunity to undergo a collision while under consider-
ation.

The long time behavior o€,z for eachN, 8 [Fig. 9b)],
displays linear dependence on time, indicating diffusive be-
havior. However forN,=1, C,2 clearly shows a crossing
from one linear regime to another, which may be a possible
indication of finite system size for low density. For short
times, [Fig. Ab) insef the behavior is ballistic as indicated
by the quadratic increase @,z in time. AsN, is increased,
the range of the ballistic regime dramatically decreases indi-
cating a decrease in the Enskog collision time The bal-

Ca(®)

_____ — listic and diffusive regimes are consistent with what is ex-
%0 0.2 04 06 pected for kinetic theory of elastic, finite-sized particles.
U
FIG. 9. (Color online (a) The velocity autocorrelation function D. Self-diffusion
C,(1). (b) The mean square displacement in xrgirection for each The self-diffusion constanD, can be determined for a

N, 3 for t=0—2.5 s.Inset:the short time behavior indicated by the system of particles by either evaluating the time integral of
box in the main figure(c) The diffusion constants calculated for the velocity autocorrelation function,
each¢, where (O) corresponds to the numerical integration@f

from (&), and (¢') corresponds to the least squares fitg¢ from D= f”c (t)dt (12)

(b). The dashed line shows the kinetic theory result for a fixed 0o Y '

temperature, which is given by the average measured value over

this range of¢. or using the relationship between the mean square displace-

ment of the particles and time over long times,
strongly depended on the density of the system. For very low

densities the characteristic form of the correlation function DI ic ¢ 13
was given simply by _thdt xe(t), (
C,(t)=(v(0)?)e Ve, (100  whered is spatial dimension. From kinetic theof§0], the
diffusion constant of a two-dimensional gas is calculated as
where ¢ is the Enskog collision time. If the density of the T\ 12
system is increased however, the form of E40) breaks D=7 W_) , (14)
down andC,(t) can become negative with long range tails 8¢g(o)| m

due to the caging of particles by their neighbors. We find, ) ) ) ,

that thelowestdensity case becomes, and remains negativelj’hereg(o) is the radial correlation function at contdég]
correlated after the decay fro(w(0)2) [Fig. A@)]. This ap-  diven by

pears to be in contradiction with R€#2] but is due to a

finite-size effect. That is, the particles are interacting fre- g(r=0)= 16—-7¢ _
quently with the side walls at low densities, which reverse 16(1— )2
the sign of velocity vectors, thus leading to the observed

anticorrelation. The predominance of the sidewall interacBy numerically integrating the curves in Fig(a®, and per-
tions are screened for the intermediate densities due to tHerming a least squares fit to the data in Figb)9after the
increased number of particle-particle collisions, therefore ndallistic regime, we obtain the self-diffusion constdete
anticorrelations are observed. Fig. 9c)]. We find that the values for the self-diffusion from

(15
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FIG. 10. (Color online The velocity distribution functions
P(vy) versusv, on a linear-linear scalga) N;=1, 8=2.0, (b)
N=2, B=2.0, (c) N;=3, B=2.0, (d N,=4, B=2.0, (e N,
=4, B=4.0, (f) N;=5, =4.0. The solid curves are a least
squares fit to a Gaussian form given by Efj7). Note that the
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FIG. 11. (Color online The velocity distribution functions
P(v,) versusv, on a log-linear scalea) N;=1, 8=2.0, (b) N,
=2, B=2.0,(c) N;=3, B=2.0, (d) N;=4, B=2.0, (e) N;=4, B
=4.0, (f) Nj=5, B=4.0. The solid curves are a least squares fit to
a Gaussian form given by E¢L7). Here the apparent deviations in

deviation from a Gaussian distribution extends all the way to thethe tails of the distribution functions are present.

lowest velocity bins. Each distribution corresponds~@x 10°

unique velocities that are found within the ROI defined in the text.

Egs.(12) and(13) are self-consistent. The solid line in Fig.
9(c) shows the form of Eq(14) with the temperatur@ given

by the granular temperature. The granular temperature is d
fined by

1 2 2
Tay=5 MW+ (W), (16)
wherem is the mass of the particles ake- - ) denote aver-
ages over the component distributidisee Sec. IV E The
other constants in Eq14) are determined from system pa-
rameters. The theory for the diffusion of elastic particles
given by Eq.(14) closely matches our results for @il Thus
we show that the effects of inelasticity on the self-diffusion
are small.

E. Velocity distributions

The distribution of thex andy components of the particle
velocities are plotted in Figs. 18-10(f)—12@a)-12(f). The

tance of 3r from the side walls. We utilize this ROI to en-
sure that large gradients ji{y), and the clustering produced
by the side walls, do not affect the measured VDFs. Each

distribution correspond te-2X 10 unique velocities that

are found within our ROI. The velocities of elastic particles
follow a distribution given by the Maxwell-Boltzmann form

17

P(v)= (27T|(BT) —d/2e—v2/2kBT,

where d is the dimensionality of the system afdis the
temperature of the heat bath that the system is in contact
with. Hence, if a system of particles is at equilibrium, its
temperature determined by the width of the distribution of
particle velocities. Equationil?) is fit to the data for the
x-components of the velocities, and is shown on both linear
and logarithmic scale@=igs. 10 and 111 We observe that the
form given by Eq.(17) displays deviations both at low and
high velocities. The distributions of velocities are normally
displayed in a log-linear fashion to accentuate the tails of the
VDF; however, this suppresses the deviations at low veloci-

distributions correspond to velocities that are measureties. By plotting the distributions on a linear scale we display
within a region of interest. The ROl is defined by making athe more statistically significant deviations from E#j7).

narrow slice across thg direction that is centered upon the
peak inp(y) while excluding particles lying within a dis-

In a recent experimental workl7], a two-dimensional
collection of particles is driven into a steady state. Using
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~.10° a function of distance from the driving wall for eadh. If the
o , isothermal atmosphere condition was satisfied these would be con-
10 stant values for aly above the peak ip(y). For values ofN;>2
10° the temperatures follow a nonmonotonic form that has a distinct
3 h P 5 minimum. (b) The kurtosisy, measured fronP(v,) as a function
O T RSN of the distance from the driving. The values given by a Gaussian
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(solid line) and the form proposed in E¢18) (dashed are only

FIG. 12. (Color onling The velocity distribution functions attained very far from the energy source.

P(v,) versusv, on a log-linear scale(@ N;=1, 8=2.0, (b) N,
=2, B=2.0,(c) N;=3, B=2.0,(d) N;=4, B=2.0,(e) N\=4, B
=4.0, (f) Nj=5, B=4.0. The large skewness in the distributions
for the negative values af, is due primarily to the driving from the
bottom wall. Particles that are moving in they direction are leav-
ing the moving wall.

We also measure the component of the granular tem-
peratureT, [see Eq.16)], to probe the scaling behavior of
the velocity distributions. Figure 18 shows the measured
granular temperature as a function of distance from the driv-
ing wall. At low densities N;<2), T,(y) initially increases
and then decays. In contrast, fd{,&3), T,(y) has a dis-
&i_nct minimum. We note that,(y) never reaches a constant
value and the minimunimaximun) does not correspond to
the peak inp(y).

To further show the nonuniversality of the VDFs, we plot
(18)  the kurtosis as a function of distance from the driving wall.
The kurtosis is obtained by the following:

analysis techniques that are similar to ours, the authors pr
posed a governing form for the VDF given by

|7l.5
X
1

R(v)=Ae~ Blvy /T

whereA andB are constants anf, is thex component of the <v4>
granular temperature defined in Ed6). They claim to have = TX (19)
seen auniversalVDF which they parametrized by a single (vx>2

value, regardless of the system density or the value of the o )

inelasticity of the particles. From our VDFs, whose corre-!f the velocity distribution is a Gaussian then=3, shown
sponding densities range over an order of magnitude anBy the solid line in Fig. 1&), an_d if the distribution is given
where the average inelasticity varies by nearly a factor oPY EQ.(18) theny=3.576. We find that the measured values
two, we cannot find any single parameter fit that describedor v exceed the value for a Gaussian and also vary as a
the overall form. function of distance from the driving. This analysis is con-

The VDFs for they componentsP(v,) versusv, for each sistent with our previous resulf21] and recent MD simula-
N, in our ROI are also measure{de{e Fig. 1@y_f)]_ The tions of Brey and Ruiz-Monter{27] that closely mimic our
VDFs are highly skewed by the asymmetry in the driving €XPeriment.
against the direction of gravity. To identify the effects that _
the asymmetry irP(v,) has uponP(v,), we have separated F. Equation of state
the v, distributions by the sign ofv,, i.e., P(v|+v,; The equation of state for ideal gases relates the pressure to
—Vy). We have found that the form for these conditionalthe temperature and the density,
distributions are not affected by the sign\gf, however, we
do note that their widths differ, withvx)+vy<<vx)_\,y. P=nkgT, (20)
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wheremis the mass of a particle arglis the acceleration of
gravity. Due to the nonvanishing gradient of temperature the
general form of the pressure gradient must be taken into
account

dpP T dn N dT, of
ay ~vay "ay 24
We find that Eq(24) is indistinguishable from the numerical
derivative ofd(nT,)/dy.

We have measured the pressure gradient acting on a par-
ticle held at a particulay by evaluating

Ty, d(nTy)_ )
(e e

whereg’ = 2gsin(B). Figure 14b) shows the left-hand side
(Ihs) of Eq. (25 for =2, and Fig. 14c) for B=4. The
solid lines correspond to the valuesgif with 8= 2,4 found
by utilizing Eq.(1) and the data in Fig.(®). We find that the
measured values systematically overestimate the actual val-
ues forg’ in the region where the density reaches it's maxi-
mum. Our interpretation assumes a dilute gas, therefore the
deviations near the peak p(y) are not surprising.

To incorporate the effects due to increased density, we
have obtained the pressure from the interpolated equation of
state derived by Grossman, Zhou, and Ben-Nbin

of y, the distance from the driving wallb) The ratio of the mass

density to the granular pressure forcenjp) (d P/dy) as a function
of distance from the driving wall. The solid line correspondgto
for B=2°. (c) The same asb) for B=4°. The obvious deviation

ne+n

i (26)

P=nT

for regions of high density show a breakdown of the simple treat-Wherenc is the close packing number density. Utilizing Eq.

ment of the granular equation of state in regions of high density.

wheren is the number density ankl is Boltzmann’s con-

(26) to calculate the gradient of the pressLiEg. (23)]. How-
ever, we find that the disagreement persists between the Ihs
of Eq. (25 and the measured value gf near the peak in

stant. If we assume that kinetic theory is valid for a granular y)
gas, we can immediately relate the average squared speé)o(, ‘
(v?) of the particles to the temperature,

m(v?)=kgT,

for each degree of freedom. Figure(&dshows the pressure,
P=(nm/2)<v§> as a function of distance from the driving

(21)

V. SUMMARY AND CONCLUSION

In this paper, we have presented a statistical analysis of an
inelastic gas that is constrained to two dimensions. Utilizing
high-speed digital image processing we perform long-time
tracking over a broad range of densities. Not surprisingly, we
observe that the statistical properties of inelastic gases devi-

Wa”' Due 1o the effects of gravity on the par'tlcles, the den'ate from expectations of the kinetic theory for smooth elastic
sity should follow the well-known atmospheric law,

p(y)=poe MMy,

which assumes a constant temperature. We find that the te
perature is not constant for anly; 3 [see Fig. 13 This is
also consistent with our observations of the density distribu
tions in Sec. Il A, wherep(y) deviates from the form of Eq.

(22).

Momentum balance implies that the gradient of the pres

sure is related ta by the following equation:

dp
dy

=-—nmg,

(22

(23

particles. The most apparent discrepancies are found in the
distribution of free paths and times and the distribution of
particle velocities.

To characterize our system we measure the effective co-
fRificient of restitution from the relative precollision and post-
collision velocities of particles undergoing binary collisions.
We find that the normal component of restitution and the
energy inelasticity are not single-valued, but have a distribu-
tion of values even for the same impact parameters. The
mean value of the normal components of restitution system-
atically decreases with the system density. We also find that
the energy inelasticity can take on values greater than unity,
demonstrating a transference of energy from the rotational to
linear degrees of freedom. In a recent numerical work Barrat
and Trizac have measured the projected one-dimensional co-
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efficient of restitution Refd.39,44] and the energy inelastic- dicular to the direction of driving does not have a universal
ity. Their interpretation is that the coefficient of restitution form, but depends on both the density and the inelasticity. In
and the energy restitution are random variables that charaaddition, we find a distinct asymmetry in the VDFs parallel
terize collisions, consistent with our findings. to the driving direction. We measure the granular tempera-
The distribution of path lengths and free times are showriure as a function of distance from the driving source and
to have an overpopulation of the short distance and timdéind nhonmonotonic behavior. For low densities, the granular
bins. We have proposed an empirical form in EG& and  temperature has a distinct maximum and for high densities
(7b) which capture the overall behavior of the observed disthere exists a distinct minimum. The temperature inversion at
tributions of paths and times. By integrating these distribu-higher densities has recently been described via granular hy-
tion functions, we are able to measure the mean free path arttodynamics by Ramez and Sot$45]. However, the cross-
mean time. The average speed obtained from the speed disver from T(y) having a maximum(for low densitie$, to
tribution and from the mean free path and time are in closél(y) with a minimum at high densities has not been dis-
agreement. Inspired by these finding, Paolettl.[26] have  cussed in any kinetic or hydrodynamic models.
reported similar results for the mean free time in a simulation By using kinetic theory and simple hydrodynamics we
that mimics our system. have tested the force balance between the gradient of the
Particle diffusion constants are measured from two indepressure exerted by a granular gas on a particle and the force
pendent long-time averaged correlation functions. The meadue to gravity[Eq. (23)]. We find strong deviations in the
square displacement and the velocity autocorrelation funcregions of high density. A simple hydrodynamic form, that
tion are calculated. By then performing least squares fittinglescribes the behavior over all densities, is not yet available.
and numerical integration to these quantities, respectively,
the s_elf diffusion over a broad range in densi_ty is calculated. ACKNOWLEDGMENTS
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