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Rheology and dynamics of colloidal superballs†‡

John R. Royer,*ab George L. Burton,ac Daniel L. Blairc and Steven D. Hudson*a

Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled,

non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in

the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions

are important. We examine the role of particle shape by characterizing both the bulk rheology and micro-

scale diffusion in a suspension of pseudo-cubic silica superballs. Working with these well-characterized

shaped colloids, we can disentangle shape effects in the hydrodynamics of isolated particles from shape-

mediated particle interactions. We find that the hydrodynamic properties of isolated superballs are

marginally different from comparably sized hard spheres. However, shape-mediated interactions modify

the suspension microstructure, leading to significant differences in the self-diffusion of the superballs.

While this excluded volume interaction can be captured with a rescaling of the superball volume fraction,

we observe qualitative differences in the shear thickening behavior of moderately concentrated superball

suspensions that defy simple rescaling onto hard sphere results. This study helps to define the unknowns

associated with the effects of shape on the rheology and dynamics of colloidal solutions.

1 Introduction

There is a growing interest in anisotropic colloids,1–3 while new
synthesis techniques now make it possible to create a variety of
different types of particles with uniform, well-controlled, non-
spherical shapes. Simulations have shown that particle shape
can have a dramatic effect on both the packing structure and
equilibrium phase behavior of a material.4–6 When used in
combination with other interactions and functionalization
schemes, particle shape can play a key role in the design of
materials for self-assembly.7

Despite this recent interest in anisotropic colloids, we are
only beginning to understand how particle shape influences
the rheology and micro-scale dynamics in a suspension. While
previous studies have made progress understanding how particle
shape influences the single-particle hydrodynamics,8–13 this can
only capture the first-order viscosity corrections in the dilute
limit. Experiments exploring concentrated suspensions of colloidal14

and non-Brownian15 rods found significant shape effects, parti-
cularly in the shear thickening behavior, but there is no general
theory to relate the microstructure and rheology in suspensions of
anisotropic particles. This highlights a growing need for detailed
experiments that can simultaneously probe both the bulk proper-
ties and micro-scale structure and dynamics in suspensions of
well-controlled and well-characterized non-spherical particles.

Here we work with suspensions of pseudo-cubic hollow-shell
silica superballs,16 colloidal particles with a shape well described
by an equation of the form

|x|m + |y|m + |z|m r am (1)

where a characterizes the particle size and the exponent m is
known as the shape parameter. For m = 2 this equation reduces
to a sphere with radius a, while for m 4 2 this equation des-
cribes cube-like shapes with rounded corners that approach
sharp cubes as m -N. Previous studies using similar particles
focused on the self-assembly and crystal formation in quasi
two-dimensional systems, using either depletion16 or capillary
forces17 to induce attractive interactions between the superballs.
Here we instead focus on three-dimensional suspensions with-
out induced attraction to isolate the role of particle geometry.
These particles are well-suited for exploring the role of particle
shape because they are mono-disperse, readily dyed and index
matched for confocal imaging, and can be synthesized in
bulk quantities. This allows us to do both bulk rheology and,
using confocal imaging, precisely locate and track particles to
characterize the suspension microstructure and particle diffu-
sion. Varying the volume fraction to explore both dilute and
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moderate concentrations, we find that these superballs behave
similar to spheres at the single particle level but shape effects
manifest themselves in the particle interactions.

2 Methods and materials
Superball synthesis

We synthesized hollow silica superballs following the approach
initially described by Rossi et al.,16 first synthesizing pseudo-
cubic hematite (a-Fe2O3) particles to serve as templates, then
coating the hematite particles with a thin layer of silica using a
modified Stöber process.18 This silica shell is roughly 60 nm thick
and porous, allowing fluid to slowly diffuse through the shell. We
take advantage of this to etch away the hematite cores by placing
the coated superballs in a strong acid. After 24 h to 48 h the cores
are completely dissolved, leaving only the silica shells. Details of
the synthesis procedure are provided in the ESI.‡

In Fig. 1 we characterize the size and shape of the hollow
silica superballs used in this work. From TEM images of indi-
vidual superballs (Fig. 1A) we use image processing routines to
extract the contour of the of the outer edge. We then fit this
contour to a 2D superball |x|m + |y|m = am to extract the
shape parameter m and edge length L = 2a. Repeating this
procedure with multiple TEM images (Fig. 1B), we find that
hLi = 1.50 mm � 0.06 mm and that hmi = 2.85 � 0.15. From the
variance of the measured edge length distribution hDL2i we

compute the polydispersity s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL2h i=hLi2

p
¼ 0:04, a rather low

value compared to other colloidal systems.19 Fluorescent and
undyed superballs were made from a single batch of hematite
templates and the resulting silica particles were indistinguishable
in both size and shape.

Index matched suspensions of silica superballs were prepared
using a glycerol–water mixture (92% glycerol mass fraction,
refractive index n = 1.461), with a small amount of added salt
(NaCl) to screen electrostatic interactions (the Debye screening
length is k�1 = 7 nm). A detailed description of the index
matching procedure for these hollow, porous shells is provided
in the ESI.‡ Diffusion of the high viscosity index-matching fluid

(m = 0.29 Pa s at 21.0 1C) through the silica shells is exception-
ally slow, so that the superballs can be considered as imperme-
able solid particles over the timescales for the diffusion and
rheology measurements. This low permeability could also be
exploited to image undyed superballs by fluorescently dyeing the
outer fluid.

We also work with two common ‘hard-sphere’20 colloidal
systems: 2a = 1.54 mm plain silica spheres (Bang Laboratories,
Inc.) and 2a = 1.45 mm sterically stabilized, fluorescent poly-
methylmethacrylate (PMMA) spheres (purchased from Andrew
Schofield, the University of Edinburgh). These colloidal spheres
are similar in size to the superballs, allowing for direct compar-
isons between the behavior of the colloidal spheres and super-
balls. The silica spheres were index matched using a similar
glycerol–water mixture, adjusting the glycerol content to match
the slightly lower refractive index (70% glycerol mass fraction,
refractive index n = 1.426, viscosity m = 0.02 Pa s at 21.0 1C). The
PMMA spheres were index matched using a cyclohexylmethyl
bromide (CXB)–decalin mixture (73% CXB mass fraction), with
a small amount of tetrabutylammonium bromide salt to screen
electrostatic interactions.

Confocal imaging

To characterize the particle diffusion and suspension micro-
structure, we imaged and tracked particles in three dimensions
using a Leica SP-5 laser scanning confocal microscope. Samples
were prepared in plasma-cleaned glass capillaries sealed with UV
epoxy and stored when not in use on a slowly rotating mixing
wheel to prevent sedimentation. We restricted the imaging
volume to at least 25 mm above the bottom surface and at least
100 mm from the sides of the capillary to avoid wall effects. The
fluorescent PMMA spheres could be imaged readily and tracked
using standard techniques.21,22

Locating the hollow superballs posed a challenge, since
instead of a bright peak at the particle center, the fluorescent
shells define the particle edges. In two-dimensional slices from
a 3D image stack, the superball shaped shells can be picked up
by a circular Hough transform to locate the (x,y) position of
each particle. These positions were linked together using
tracking routines and averaged to locate the z position of each
particle. To prevent multiple particles from being misidentified
as a single object, we used an iterative routine to break apart
tracks longer than 1.5 times the edge length of a superball.
This routine can accurately locate the superball positions but
requires high-contrast, high-resolution images, making high-
speed three dimensional tracking challenging in moderately
dense suspensions. While the superball pair distribution func-
tion was measured using samples consisting solely of fluores-
cent superballs, diffusion measurements were carried out using
undyed superballs with a small amount of fluorescent tracers.
This allowed us to image larger volumes at reduced resolu-
tion and track tracer particles over long times (up to 3 h). In
these measurements we fluorescently dyed the glycerol–water
suspending fluid, allowing us to obtain negative images of
the undyed superballs to measure the volume fraction for
each sample.

Fig. 1 Colloidal superballs (A) sample TEM image showing a hollow silica
superball. The blue line shows a fit of the edge contour to |x|m + |y|m = am

to extract the shape parameter m and edge length 2a. (B) Scatter plot of
the shape parameter and edge length extracted from 96 TEM images from a
single batch of superballs. Bar plots above and to the right show histograms
of the same data.
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Measuring volume fraction

To ensure that the composition and viscosity of the suspending
fluid remained constant from sample to sample, suspensions
with varying volume fraction f = Vpart,tot/Vtot were prepared by
diluting moderately concentrated stock solutions, using the
supernatant from the final centrifugation step for the sub-
sequent dilutions. We measure f using confocal imaging to
locate particles within a 3D volume and computing the Voronoi
tessellation23 from the measured particle positions. The total
volume Vtot is the sum of all the cell volumes, excluding those
on the boundaries, and Vpart,tot = ncellsvsb(a,m), where ncells is the
number of cells and vsb(a,m) is the volume of a superball with
size a and shape parameter m. The volume of a superball can
be expressed analytically in terms of the Euler beta function
B( p,q) = G( p)G(q)/G( p + q) by24

vsbða;mÞ ¼
8

m2
B

1

m
;
mþ 1

m

� �
B

1

m
;
mþ 2

m

� �
a3; (2)

which gives vsb E 5.53a3 for m = 2.85, roughly 32% larger than a
sphere of radius a.

Samples for diffusion measurements were all prepared from
a single stock solution, while a separate stock was used for the
superball rheology measurements. We directly measured the
volume fraction of all samples used in the diffusion measure-
ments. For the rheology we imaged a subset of the samples to
determine f for the stock solution and subsequent dilutions.
Spatial variations in the measured volume fraction, uncertainty
in the particle size and particle locating errors in the confocal
images limit our relative uncertainty in f to about 5% to 7%,
e.g. f = 0.37 � 0.02. We used a similar procedure to measure
the volume fraction in the hard sphere samples. The volume
fraction in a sample can be roughly estimated by centrifuging a
fixed volume and measuring the volume of the densely packed
sediment and assuming random close packing in the sediment,
using frcp = 0.71 for the superballs25 and frcp = 0.64 for spheres.
However we found this method tended to underestimate the
volume fraction by roughly 10% indicating that fsed o frcp,
a discrepancy which has also been observed by others.19

Rheology

The rheology of silica superballs and solid silica spheres was
characterized under steady shear at 21.0 1C using an Anton-Paar
MCR302 with a 25 mm cone-plate tool. A temperature control
hood was used to minimize exposure to ambient moisture to
prevent the hydroscopic glycerol–water index matching fluid from
absorbing extra water. The sample was sheared at _g = 100 s�1 for
10 min prior to collecting data to ensure the sample was uni-
formly mixed. For each sample we performed four back to back
sweeps of the shear rate and observed minimal drift or hysteresis
in the measured viscosity Z(_g). We varied the shear rate from
_g = 100 s�1 to _g = 103 s�1, covering a range of Péclet number
Pe = 6pma3 _g/kBT from Pe = 5.8 � 102 up to Pe = 5.8 � 105.
However the maximum Reynolds number for individual particles
remains below Rep r 4 � 10�3 even at our maximum shear rate,
so inertial effects remain negligible.

For dilute suspensions of silica spheres (f o 0.15) we also
employed a double-gap Couette cell, though the sample volume
requirements prevented us from using this cell with our
superballs. While there were no significant differences between
results obtained using the cone-plate tool and Couette cell,
there is less scatter in measurements using the Couette cell.
This is due to the large sample volume required for the Couette
cell relative to the cone-plate tool (3.8 mL vs. 75 mL), making the
results much less sensitive to small pipetting errors or changes
in the water content in the suspending fluid from absorbed
ambient moisture.

3 Results and discussion
Rheology and diffusion in dilute suspensions

In Fig. 2A we plot the relative viscosity Z( _g)/m of our superball
suspensions at low to moderate volume fractions. Below
f E 0.25 we observe Newtonian behavior, where the suspension
viscosity is independent of shear rate and only depends on f.
This Newtonian viscosity ZN(f) corresponds to the ‘high-shear’

Fig. 2 Viscosity of dilute superball suspensions. (A) Relative viscosity Z/m
versus shear rate _g for superball suspensions at various volume fractions.
(B) Newtonian high-shear viscosity ZN/m for superballs (black squares) and
silica spheres (red circles) versus f. Black lines show ZN/m = 1 + [Z]f for [Z] =
2.54 (solid line) and [Z] = 3.1 (dotted line). Dashed lines include second
order corrections: ZN/m = 1 + [Z]f + c2f

2. Red dashed line: predicted hard-
sphere values26 [Z]HS = 2.5 and cHS

2 = 6.0. Grey dashed line: a fit to the
superball results yields c2 = 6.2 � 0.4. Error bars in (A) reflect variations in
Z over the course of repeated up and down shear sweeps, while in (B) they
include uncertainty in m = 0.292 Pa s � 0.001 Pa s.
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limiting viscosity (sometimes denoted ZN), since Pe c 1 even
at our lowest shear rates.

In dilute suspensions (f t 0.2), the relative viscosity can be
expanded as ZN/m = 1 + [Z]f + c2f

2 + O(f3), where [Z] is the
intrinsic viscosity. The intrinsic viscosity characterizes the
hydrodynamic stresses acting on an isolated particle in a simple
shear flow,29 and thus depends directly on the particle shape.
For hard spheres [Z]HS = 2.5 and can be obtained analytically,29,30

while a variety of numerical techniques are available to compute
[Z] for more complex shapes.10,31 Recent experimental work with
PbTe and Fe3O4 nano-cubes found [Z] = 3.1, in agreement
numerical predictions.12 This larger value is due to large hydro-
dynamic stresses near cube corners, which are blunted with
our rounded cubic superballs. Recent numerical work32 on the
hydrodynamic properties of superballs over a range m found
that for m = 2.85 the intrinsic viscosity is [Z] = 2.54, only
marginally above the hard sphere value.

A direct comparison between dilute suspensions of spheres
and superballs (Fig. 2B) reveals little difference in the relative
viscosity of the two types of particles. Fitting the superball
viscosity for fo 0.05 to ZN(f)/m = 1 + [Z]f yields [Z] = 2.57 � 0.11,
consistent with [Z] = 2.54 predicted in ref. 32 and below [Z] = 3.1
predicted for ideal cubes. The results for the silica spheres
agree exceptionally well with both the linear [Z]HS = 2.5 and
second order cHS

2 = 6.0 coefficients predicted for ideal hard
spheres (Fig. 2B). Including the second order term in the
superball viscosity for f o 0.15 yields c2 = 6.2 � 0.4, again
giving a coefficient that is slightly higher than the comparable
hard sphere value.

In Fig. 3A we plot the three dimensional mean squared
displacement (MSD) hDr2(Dt)i = h[-r(t + Dt) � -

r(t)]2i for fluores-
cent tracer superballs over a range of f. In dilute suspensions,
diffusion slows down as f increases but the MSD remains
linear, allowing us to extract the long-time self-diffusion coeffi-
cient DL(f) by fitting hDr2(Dt)i = 6DLDt. At volume fractions
above f E 0.25 the MSD is initially sub-diffusive before transi-
tioning to diffusive motion at later times, when the root mean
squared displacement is roughly a distance a. In these samples
we restrict out fit to the late-time regime, where the MSD is
linear, when computing DL(f).

We fit DL(f) = D0(1 + D2f) for f r 0.2 to extract the single
particle diffusion constant D0 and the first-order correction D2.
We obtain D0 = 1.14 � 10�3 mm2 s�1 � 0.06 � 10�3 mm2 s�1,
giving an effective hydrodynamic diameter dH � kBT/3pmD0 =
1.59 mm � 0.11 mm. Most of the uncertainty in dH is due to
uncertainty in the viscosity of the glycerol–water supernatant m.
Our measured dH is just slightly larger than the edge length
(dH/2a = 1.06� 0.08) and consistent with recent numerical work
by Audus et al.32 which predicts dH/2a E 1.10 for m = 2.85.

Diffusion and structure

When looking at single particle hydrodynamic properties such
as the intrinsic viscosity [Z] and hydrodynamic diameter dH,
these superballs seem almost indistinguishable from hard-spheres.
However, there is a clear difference between the superballs and
hard spheres in how the diffusion slows down with increasing

f (Fig. 3B). Our measured DL(f)/D0 in the PMMA spheres is
slightly above, but generally in agreement with previous experi-
mental results27,28 and the initial slope D2 = �2.08 � 0.01 agrees
well with the predicted value for hard spheres29,33 DHS

2 = �2.1.
However, in the superball suspensions we observe a significantly
faster initial decrease in DL(f)/D0, with D2 = �3.48 � 0.19. This
difference in the long-time self diffusivity is evident even at
relatively low volume fractions (f o 0.20), where we observe
minimal differences in the relative viscosity of superball and
hard sphere suspensions. This suggests that the difference in the
long-time self diffusivity of the spheres and superballs is due to
differences in the suspension microstructure.

We therefore compare the pair distribution function g(r) for
spheres and superballs at different volume fractions in Fig. 4. For
PMMA spheres the measured pair distributions match expecta-
tions for a hard-sphere colloidal liquid (Fig. 4A). Theoretically, in
mono-disperse hard spheres with radius a, the pair distribution
g(r) = 0 for r o 2a then jumps to a finite value gm at contact r = 2a.
In practice polydispersity and particle locating errors blur this
jump, though the peak location is still close to r = 2a. At higher

Fig. 3 Superball diffusion. (A) Mean squared displacement (MSD) of fluor-
escent tracer superballs tracked using 3D confocal microscopy. Dotted
lines: fits to hDr2i = 6DLDt. (B) Long-time self diffusion coefficient DL(f) for
superballs (black squares) and PMMA spheres (solid red circles). Error bars
in (B) reflect the standard deviation from multiple measurements with the
same sample. Solid lines: fits to DL(f) = D0(1 + D2f) for fr 0.20. Red open
symbols show data for DL/D0 for hard spheres from van Megen et al.
obtained using tracer particles in a DLS setup. Open circles: 2a = 166 nm
poly(vinyl alcohol) spheres with 2a = 170 nm PMMA tracers in decalin.27

Open diamonds: 2a = 432 nm PMMA spheres with 2a = 410 nm silica
tracers in a decalin–CS2 mixture.28
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volume fractions the peak gm increases, reflecting a growing
number of particles in close contact, and damped oscillations
appear for r 4 2a, reflecting spatial correlations in the local
density.34 In superball suspensions, we observe similar trends
in both the rise in the first peak and the development of
oscillations as f is increased.

With superballs there is no longer a single distance at which
particles come into contact, but instead the conditions for contact
depend on the relative particle orientations. The minimum
possible separation between superballs with size a defined by
eqn (1) is r = 2a, corresponding to face-to-face contact. However,
when scaling r by this minimum separation we find g(r) for the
superball suspensions is shifted to larger distances compared to
the hard sphere g(r), with the first peak occurring at a substan-
tially larger separation (Fig. 5A). In Fig. 5B we show the same data,
but replace a with an effective radius aeff = 31/2�1/ma defined by the
minimal sphere needed to enclose a superball, i.e. the radius to
the corner. This effective radius reduces to aeff = a for m = 2
(spheres), aeff = 31/2a for m - N (cubes) and for our superballs
with m = 2.85 we have aeff E 1.18a. Scaling by this effective radius
matches both the location of the first peak and the oscillation
period for the sphere and superball suspensions, so that the
shifted pair distributions for the different particles at the same
f look nearly identical (Fig. 5B).

Motivated by this rescaling, in Fig. 5C we re-plot DL/D0 for
the spheres and superballs against an effective volume fraction
feff defined by this minimal enclosing sphere. The effective
volume fraction is related to the physical volume fraction f by

feff ¼
4
3
paeff 3

vsbða;mÞ
f (3)

where vsb(a,m) is the volume of a superball given by eqn (2). For
our particles with m = 2.85 the effective volume fraction is
feff E 1.24f.

The first order corrections to DL(f)/D0 are proportional to
terms of the form33,35 n

Ð1
2ahðrÞgðrÞr2dr, where n is the particle

number density, h(r) characterizes different types of particle–
particle interactions (hydrodynamic, etc.) and the lower limit of

Fig. 4 Microstructure of superball and hard sphere suspensions. Pair
distribution function g(r) for suspensions of (A) superballs and (B) PMMA
spheres at various volume fractions f. The separation distance r is scaled
by the average diameter 2a = 1.45 mm for the PMMA spheres and by the
average edge length 2a = 1.50 mm for the superballs. Error bars reflect the
standard deviation reflect the standard deviation from multiple measure-
ments with the same sample.

Fig. 5 Effective superball radius. (A) g(r) for superballs (black squares) and PMMA spheres (red circles) at f = 0.31. Data and error bars are the same as in
Fig. 4. (B) Same data with the separation distance r scaled by the effective diameter 2aeff, where aeff = 31/2�1/ma so that aeff = 1.18a for the superballs and
aeff = a for the spheres. (C) DL/D0 for spheres and superballs (same data, symbols and error bars as in Fig. 3), with the superball data now plotted against
the effective volume fraction feff defined by the minimal enclosing sphere.
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integration reflects the fact that g(r o 2a) = 0 for hard spheres.
For hard spheres we non-dimensionalize the integral by scaling
r̃ = r/a to obtain a term proportional to a3n p f. We have shown
that the sphere and superball pair distributions align when we
replace 2a - 2aeff, and if we assume the interaction terms
contained in h(r̃) are similar for the spheres and superballs,
then this first order correction for the superball long-time self
diffusivity is the same as in the hard sphere case but with a3n
replaced with aeff

3n p feff. Rescaling by this effective volume
fraction brings the superball and sphere long-time self diffu-
sion results into closer agreement, though DL(feff)/D0 for the
superballs still falls slightly bellow the hard sphere data and a
linear fit gives an initial slope D2 = �2.80 � 0.16. This suggests
that non-negligible differences in the hydrodynamic interactions
h(r̃) remain.

This shape mediated excluded volume interaction might
manifest itself in other quantities that depend on the particle
interactions, such as the osmotic pressure. Collision-driven
molecular dynamics (MD) simulations of dense superball sus-
pensions by Batten et al.24 show a similar shift in g(r), however
osmotic viral coefficients computed in that same study do not
show this large excluded volume effect, for example B2/vsb E 4.1
for m = 2.85 while B2/vsph = 4 for hard spheres. It is possible that
this difference is due to the additional hydrodynamic contribu-
tions contained in h(r), or that the rotational diffusion needs to
be better modeled to capture this effect.

The rotational diffusion coefficient DR(f) of hard spheres
exhibits a much weaker dependence on f than the translational
diffusion coefficient.36 Since the superball shape does not
dramatically effect the single particle hydrodynamics, we expect
the single particle rotational diffusion coefficient to be well
approximated by the hard sphere value DR,0 = 3D0/4a2. The
angular mean squared displacement is given by hDy2i = 4DRDt,
so the timescale tR for a superball to diffuse a root mean squared
angular distance Dy = 0.96 radians (from a corner to the center of
a face) is tR E 150 s. This timescale is somewhat shorter than
the timescale for caged diffusion at higher volume fractions
(Fig. 3A), and the MD simulations24 of superballs found no
rotational correlations in the fluid phase except for rare configu-
rations with particles in perfect face-to-face contact. Together,
this suggests that the superballs can explore the full range of
orientations within their transient cages, so that their excluded
volume is essentially set by the enclosing sphere radius aeff.

In hard sphere suspensions, sub-diffusion and caged motion
becomes noticeable at volume fractions as low as f = 0.32 and
typically becomes pronounced for f4 0.4.37,38 We first observe
sub-diffusion at f = 0.25 and at f = 0.37 the sub-diffusion is
quite pronounced, indicating enhanced caging in the superball
suspensions. In terms of the effective volume fraction (feff = 0.30
and feff = 0.44) the sub-diffusion observed in these two samples
aligns much closer with the onset of sub-diffusion in hard spheres,
suggesting the short-time caging dynamics are also controlled by
this shape mediated interaction.

We cannot directly apply this rescaling f - feff to the
suspension viscosity ZN(f)/m, since the viscosity contains con-
tributions from both the single particle hydrodynamics and the

suspension microstructure. When expanding ZN/m in powers
of f, the linear term [Z]f remains unchanged since it is inde-
pendent of g(r). Higher order terms reflect the coupling between
the hydrodynamics and structure, resulting in mixed terms that
depend on both the physical volume fraction f and the effective
volume fraction feff. For details see the ESI‡ and ref. 39 and 40,
which address the relative hydrodynamic and interaction contri-
butions to the viscosity of core–shell particles.

Shear thickening at moderate volume fractions

As the volume fraction in a sheared suspension is increased, the
coupling between the suspension microstructure and hydro-
dynamic interactions becomes increasingly important and we
expect likewise the details of the particle shape to become
increasingly important. Indeed, we find that at moderate
volume fractions as low as f = 0.24 the superball suspensions
exhibit non-Newtonian shear thickening behavior (Fig. 6). The
superball suspensions exhibit mild shear thinning at our lowest
shear rates (or equivalently Péclet numbers Pe). The viscosity
then plateaus at the high-shear Newtonian viscosity ZN(f). At a
Péclet number Pec,1 the viscosity begins to rise logarithmically
over a decade in Pe. At a second value of the Péclet number Pec,2

the viscosity plateaus at a higher value ZSTS. Over the range of
volume fractions explored here the ratio ZSTS/ZN varies between
ZSTS/ZN = 1.04 at f = 0.24 to ZSTS/ZN = 1.4 at f = 0.40, a rather
mild increase compared to the large viscosity increases that have
been observed in discontinuous shear thickening suspensions at
higher volume fractions.41,42 The shear thickening observed in these
superball suspensions is reversible, with no discernible hysteresis
when repeatedly increasing and decreasing the shear rate.

While we begin to see hints of shear thickening in our silica
sphere suspensions at similar volume fractions (Fig. 6C and D),

Fig. 6 Shear-thickening. (A–D) Relative viscosity Z/m versus Péclet number
Pe for superballs (solid squares) and silica spheres (open circles in (C and D))
at various volume fractions. In (A) we illustrate how we define the Péclet
number for the onset of shear thickening Pec,1 and the viscosity plateau
Pec,2. Horizontal dashed lines show ZN/m and ZSTS/m. The solid line is a fit
to Z/m = A ln Pe + B in the shear thickening region. Pec,1 and Pec,2 are
determined by the intercepts at ZN/m and ZSTS/m, respectively.
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the shear thickening in the superball suspensions begins at much
lower Péclet numbers. The critical Péclet numbers for shear
thickening onset Pec,1 and the viscosity plateau Pec,2 in the
superball suspensions both decrease with increasing volume
fraction. However, if we plot the viscosity against the physical
shear stress s = Z _g, we find that both the onset stress sc,1

and plateau stress sc,2 are roughly constant, independent of
f (Fig. 7). In the superballs, the average onset stress is hsc,1i =
4.7 Pa � 1.3 Pa, while the viscosity plateau occurs at a stress
hsc,2i = 119.5 Pa � 15.7 Pa.

Comparing the form of Z(s)/ZN for suspensions of superballs
and silica spheres over a range of f in Fig. 7, we find that the
rescaling f - feff cannot account for the difference between
the shear thickening in the two types of particles. In the silica
sphere suspensions, the shear thickening onset occurs at a
stress sc E 20 Pa, independent of the f and well above the
onset stress in the superball suspensions. We do not observe
a comparable viscosity plateau in the sphere suspensions for
f o 0.5 within our measured shear stresses. In sphere suspen-
sions at higher volume fractions (f E 0.6), where the shear
thickening becomes discontinuous, the viscosity begins to
approach a plateau around 103 Pa, again much higher than
the plateau stress for the superball suspensions.

While the microscopic origins of shear thickening remain a
subject of active research and debate,41,42 continuous shear
thickening in colloidal suspensions is typically ascribed to large
lubrication forces that develop as particles are driven into close
contact, creating particle clusters that are tightly coupled by
these hydrodynamic forces.43–45 In this scenario, many-body
effects conspire to force particles into close contact, so the gaps
between particle surfaces d approaches 0, while hydrodynamic
lubrication forces diverge as 1/d. In real colloidal systems the
‘hard-sphere’ picture breaks down as h - 0 and details of the
surface interactions (i.e., a polymer brush or short-ranged
electrostatics) become important. The minimum separation dm

is set by balancing the shear stress and some repulsive contact
force Frep. Shear thickening occurs when the contact relaxation
time45 tcont = a(dm)/k(dm) becomes longer than the shear time-
scale 1/_g. For hard spheres, a = 3pZa2/2d is the lubrication drag
coefficient and k = dFrep/dd an effective spring constant evalu-
ated at dm. For short ranged electrostatic repulsion with a surface
potential cs, this stress is given by46,47 sc E 0.1(pere0cs

2k/a). For
sc E 20 Pa exhibited by the silica spheres, this translates to
cs = �31 mV, a reasonable value for colloidal silica.48

At present there is no theory for the critical onset stress for
shear thickening in suspensions of shaped particles. For such
particles, both the lubrication and contact forces will depend on
the relative particle orientations. While tangential forces play a
negligible role in the traditional picture for lubrication-driven
shear thickening,45 in shaped particles the role of particle rotations
should become increasingly important, particularly at higher
volume fractions. Given the nearly identical particle composi-
tions and suspending fluids, the surface potential for the
spheres and superballs should be nearly the same. While it is
possible that the difference between the onset stresses in the
spheres and superballs can be accounted for by appropriately
modifying the lubrication and electrostatic forces, it is also
possible that different modes of stress transmission and relaxa-
tion need to be considered.

The second, high-stress viscosity plateau in the shear thick-
ened state has been observed by others in suspensions of
spherical particles, though the origin of this plateau remain
unresolved.49,50 We speculate that the viscosity plateau in the
superball suspensions at sc,2 reflects a structural change that
allows the superballs to relieve large lubrication stresses, though
additional studies exploring the dynamics and structure at high
shear rates and volume fractions is needed to examine this
transition.

To characterize the increase in the superball viscosity at
higher volume fractions, we fit both ZN(f) and ZSTS(f) to a
Kieger–Dougherty type equation:

Z
m
¼ 1� f=fmð Þ�½Z�fm (4)

in Fig. 8. We employ this function as an empirical fit, fixing
[Z] = 2.54 to fit the data in the dilute limit and allowing fm to
vary. This yields fSTS

m = 0.56 � 0.04 in the shear thickened state
and fN

m = 0.68 � 0.07 in the high-shear Newtonian regime at
stresses below the shear thickening onset. We also plot this
function with fixed [Z] = 2.5 and fHS

m = 0.71 which was pre-
viously found to fit the high-shear Newtonian viscosity in hard-
sphere suspensions.26,51,52 Our measured viscosities in the silica
spheres agree quite well with this previous result for f o 0.5.
The extracted fN

m for the superballs is slightly lower than fHS
m for

hard spheres, though this difference is less than the uncertainty
in fN

m. Recent work50 examining ZSTS in strongly shear thicken-
ing suspensions of silica spheres (a = 260 nm) suspended in
poly-ethylene glycol (Mw = 200) found fSTS

m = 0.54 � 0.01, close to
our measured fSTS

m . One might expect the viscosity divergence
in superballs to occur at a higher volume fraction, since the
maximum volume fractions for disordered and crystalline

Fig. 7 Shear thickening onset. Viscosity (scaled by ZN(f)) plotted against
shear stress s = Z _g for superballs (solid squares) and silica spheres (open
circles). Vertical dotted lines show the average values hsc,1i = 4.7 Pa� 1.3 Pa
and hsc,2i = 119.5 Pa � 15.7 Pa. The range of superball volume fractions
0.24 r f r 0.40 corresponds to a range 0.30 r feff r 0.50 used the
same rescaling feff = 1.24f using in Fig. 5.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
9 

Ju
ne

 2
01

5.
 D

ow
nl

oa
de

d 
by

 G
eo

rg
et

ow
n 

U
ni

ve
rs

ity
 L

ib
ra

ry
 o

n 
26

/0
1/

20
16

 1
5:

58
:1

0.
 

View Article Online

http://dx.doi.org/10.1039/c5sm00729a


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 5656--5665 | 5663

packings of superballs exceed the maximum volume fractions
possible in sphere packings.24 Other functional forms have
been proposed to describe the divergence of the high-shear
viscosity in concentrated suspensions,50,51 however alternative
forms do not significantly change the quality of the fits or the
extracted values of fm. More data at higher volume fractions is
needed to better resolve the behavior of highly concentrated
superball suspensions.

4 Conclusions

Our results highlight the challenges and subtleties inherent in
adapting results and theories for uniform spheres to suspen-
sions of anisotropic, shaped particles. Superballs seem simple
at the single particle level, with hydrodynamic properties
(characterized by the hydrodynamic diameter dh and intrinsic
viscosity [Z]) that are marginally different from hard spheres.
However, the particle shape modifies the suspension micro-
structure (characterized by g(r)), which significantly alters
the diffusive behavior of the superballs (measured by DL(f)).
Similarly, the shear thickening at moderate concentrations is
qualitatively different from the shear thickening we observe in
comparable hard spheres.

The differences between the hydrodynamic contributions to
the viscosity and the shape-mediated contributions to the self-
diffusion highlight the challenges in applying Generalized
Stokes Einstein (GSE) relations53–55 to suspensions of shaped
particles. These GSE relations relate the viscosity and diffusion
Z(f)/m = C(f)D0/D(f), where a constant C(f) = 1 would corre-
spond to a strict GSE relation. While we expect the diffusion
and viscosity to follow a similar trend, there is no fundamental
reason this GSE relation must be strictly obeyed54,55 and a
variety of different forms of this GSE have been proposed, using
either self-diffusion coefficient, collective diffusion coefficient53,54

or Laplace transformed forms of frequency-dependent quantities.56

Mode coupling theory55 for hard spheres suggest a GSE relating
the long-time self-diffusion and the zero-shear viscosity holds
approximately with C(f) E 1 for 0 r f o 0.5, though
experimental evidence is mixed.19,54 There must be finite
deviations in dilute hard sphere suspensions, since one can
expand C(f) = 1 + ([Z] + D2)f + . . . and [Z]HS + DHS

2 = 0.4. Though
we measure the high-shear viscosity instead of the zero-shear
viscosity in this work, the intrinsic viscosity should be the same
in both limits. This indicates that deviations from C(f) E 1 in
the superballs should be more pronounced and go in the
opposite direction, since [Z] + D2 = �0.93. Relations of this form
also fail in suspensions of charged spheres,57 suggesting that the
approximate agreement in hard spheres is coincidental, and GSE
relations should not be expected to hold in suspensions where
the single particle hydrodynamics and particle interactions are
not simply related.

While it is possible to separate contributions from the single
particle hydrodynamics and shape-mediated interactions in the
viscosity and diffusion measurements in dilute suspensions,
in moderately concentrated shear thickening suspensions the
microstructure and hydrodynamic interactions are tightly coupled.
In the hydrodynamic clustering picture of continuous shear
thickening41,43,58 with spherical particles, the dynamics is con-
trolled by diverging pair-wise lubrication forces acting normal
to the particle contacts, while tangential forces exhibit a slower
logarithmic divergence with the gap size. In spheres, these
forces furthermore depend only on the gap size and the only
pathway to relax these forces is for Brownian or shear-induced
diffusion to move particles apart from each other. This is no
longer true with non-spherical particles.

Lubrication forces will depend strongly on the relative
orientations of neighboring superballs, with the potential for both
stronger lubrication forces at face-to-face contacts and weaker
forces at edges or corners where the local radius of curvature is
smaller. Furthermore, particle rotations provide a new route to
relax lubrication stresses, particularly in corner or edge facing
contacts. Previous studies have begun to explore the role particle
shape plays in setting the range of volume fractions14,15 where
shear thickening is observed and how different shapes provide
multiple avenues for stress to relax,59 however more work is
needed with well-controlled and characterized particle shapes.

Furthermore, in non-spherical particles translational and rota-
tional motion are directly coupled, suggesting an analogy to contact
friction in spherical particles. A growing body of evidence42,49,60–62

suggests that discontinuous shear thickening, where the stress
rapidly rises by orders of magnitude with increasing _g, in non-
Brownian suspensions is driven by dilation and frictional contact
forces. Discontinuous shear thickening is also observed in
(Brownian) colloidal suspensions, though the role of contact friction
in this regime is less established. While we observe only mild shear
thickening in the superballs over the range of volume fractions and
shear stress explored here, we might expect more dramatic effects at
higher volume fractions. More experimental work, as well as theory
and simulations, are needed to better understand concentrated
superball suspensions, and could potentially open a new window to
address long debated questions in colloidal science.

Fig. 8 Relative viscosity at higher concentrations. Relative viscosity for
superballs in the high-shear Newtonian regime ZN (filled squares), in the
shear thickened plateau ZSTS (open squares). Also shown is ZN for silica
spheres (red circles). Solid red line: eqn (4) with fixed [Z] = 2.5 and fm =
0.71. Blue lines: fits to eqn (4) with [Z] = 2.55 held fixed and fm allowed
to vary for ZN (solid blue line) and ZSTS (dotted blue line). Fits yield fSTS

m =
0.56 � 0.04 and fN

m = 0.68 � 0.07.
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